The Water Well Drilling Team under
The China National Complete Plant Fxport Corporation

Team leader:	Zhang Bao-sheng
Chief geologist:	Liu Deng-yue
Compiler:	Tian Jing-qio

MOGADISHU.
10. 1986.

Preface

I. Tasks

- II. The Work That Is Completed

Section One An Outline of Natural Geography
I. Geographical Location
II. Topography and Geomorphology
III. Meteorology and Hydrograohy

Section Two Regional Geological and lydrogeological Condition
I. Strata
II. Structure and Tectonics
III. Aquifer Formation

Section Three Division of Hydrogeological Sections
I. The Hydrogeological Section of the AJluvial-ProluvialMarine Coastal Plain of the Gulf of Aden.
II. The Hydrogeological. Section of the Mountainous Area of the Northern Somalia
III. The Hydrogeological Section of the Northern Plateau of Somalia

Conclusion
Hydrogeological-Divisioned Man: of the Four Northern Regions Annex

?reface
-
\therefore Tasks
In line with the stipulations of Item II in Article II of the 'Agreement on Technical and Economic Cooperation" signed in Beifing on April 18, 1978, between the Government of the People's - -epublic of China and the Government of the Somali Democratic Republic, the China National Complete Plant Export Corporation P.1spatched a study group to Somalia in November, 1978, and, on .-pril 28, 1979, signed in Mogadishu the "Notes on the Talks gbout the Project of Well Drilling in Tug Dher, Sanag, Bari and !ugal". The "Notes" stipulates that the Chinese Government would undertake the project of drilling 30 wells and of their ellhead assembly in the four northern regions of Somalia.

Besides, China agreed to drill 6 wells for Hargeisa water Fupply expansion project, which was proposed by the Ministry of Minerals and Water Resources. Meanwhile, the Somali Government momplied to reduce the estimated 30 wells to be drilled in the - our northern regions to 24 , the distribution of which would be adjusted in each region correspondingly
II. The 'rork That Is Completed

The Chinese Well Drilling Team arrived in Somalia in September, 1981, and on December 20, that very year, started its drilling Fork. Up to October 25, 1985, the drilling work had been thoroughly completed, which took 47 months in all (of which there were H months for holidays, waiting of ofl and local expenses). The . ctual time for drilling was only 36 months, three months earlier than priginally designed. The total completed footage was 7740.73 m nd the average footage completed by one rig per year was 1290 m . The drilled boreholes in the project area amounted to 43, of Fhich there are 30 wells that are able to be ured. The succus
rate is 70%. Within the list below in the quantity of the work actually completed

	amount of drilling work			amount of reorihysical exploration		well-head project	note
	footage (meter)	ro.of	No. Of good wells	surface electric sounding	$\begin{aligned} & \text { electric } \\ & \text { logging } \\ & \text { (each) } \end{aligned}$	finished	
Hargeisa	908.5	7	6	55	7		
Tug Dher	4139.94	21	12	120	16	12	*
Sool	403.51	2	2	24	1	1	
'Sanag	1083.1	7	5	24	5	5	**
Bari	912.04	4	3	20	4	3	
Nugal	293.64	2	2	5	1	2	
total	7740.73	43	30	248	34	24	

* The footage includes the useless footage of 424.06 m .
** The footage includes the useless footage of 201.65 m .

The Chinese Well Drilling leam have received a lot of support and help from the Somali people and the governments at different levels during the construction period. Having been well cooperated with by the Somalf technicians and workers, the Well Drilling Team has got over all the difficulties and the barriers and triumphantly completed this project.
ection one in Outline of Natural Geology

- Geographical Location

The project area is located in the North of Somalia, geologlcally at $8^{\circ}-12^{\circ} \mathrm{N}$ and $43^{\circ}-45^{\circ} \mathrm{E}$, having a coverage of 264,000 iquare kilometers across 6 regions.
[I. Topography and Geomorphology
The North of Somalia bears a plateau landscape with com? ?aratively high terrain in its northern part and with lower terrain along the beach and in the southern part. Its geomorphological types con be classifled as three sections, that 1s, (1) the coastal plain of erosion and accumulation of the Gulf of Aden; (2) the mountainous area of erosion and tectonism of the Northern Somalia and (3) the wavy plateau of tectonismdenudation of the Northern Somalia. The geomorphological characteristics of these three sections will be expounded in detalls below:
(1) the coastal plain of erosion and accumulation of the Gulf of Aden
The coastal plain of the Gulf of Aden varies a lot in width, with the erosion-accumulation plain of Zeila-Berbera as the most developed and with the erosion-accumulation plain of Bossaso as the second most developed. It has an undulating 'topography with a large number of remnant $h 111 s$ and sand dunes scattered on its surface. Blown by the sea wind continually, thecrescent dunes are formed on the wide river courses and the vast sandy beach, which is very difficult for traffic and transport. The climate is extremely arid because of the burning sunlight and the strong evaporation. Separated by the high mountains, the plain is swejt with heat waves all day long as the hot air and the cold air con rot bo convected so that it becomes the !ottest area of tre would. The vegetation Is sparse and withered, taking on a fironi:i l birren lendscape.
(2) the mountainous area of erosion-tectonism of the Northern Someila
Stretched from east to west and influenced by the NW fault zones if Erl Afwein and of Bossaso, the whole mountein range is cut into three divisions. The north side and the south side of this -ange are obviously unsymmetrical in this mountininous area. The north slope is like a series of terraced positive fault, forming steep cliffs. is it is sharply eroded and denudated כy the late-formed rivers, the range appears like a series of mountain chains, with mountains high, valleys deep, with cap cock looking like a sawtooth-shaped roof after the denudation, and with granite mass looking like perfectly round hills. "Because of the large dipangle of the cap rock, rows after rows of single-sided mountains ranging from east to west are often -formed.

The cap rock in the south slope has a flat occurrance, thus forming the table-like mountains or gradually becoming the plateau of the Northern Somalia. Its altitude ranges from 1500 to $1800 \cdot \mathrm{~m}$ with the midpart in the north of Erigavo amounting to 2408 m in height, which his a drop of 2000 m as against the coast of the Gulf of Aden.

Because of many tectonisms between the mountains and because of the erosion by the rivers, a few wide valleys are formed, which have become the important communication lines from the inland to the Gulf of Aden.
(3) the wavy plateau of tectonism-denudation of the Northern Somalia
The main body of the plateau of the Northern Somalia is composed of the Haud and the Sawl plateaux and its top has a wavy surface rising and falling constantly. The occurrance of the strata is flat and gradual as if having a gradual syncline. In the wide valleys, the lonse sodimentray deposit is
thick and during the rainy seasons there are transcient water flows. So $1 t 13$ an excellent pasture with exuberant vegetation. Upon the wide flatish hills, exposed are the Karkar dolomitic Ifmestone with thin capping. The weathered ctastic stratum is predlaposed to recelving the infiltration water supply by the radnfall while the region of eypsolyle abounds in huge minkholes.

Owing to tectonism, there appear downcast river valleys on various scales between the large plateaux or on thelr lops, for example, the Iug Dher-Nugal river valley, the Daror river valley and the channel zone between Erl Afwein and Sarmanyo. These river valleys becone the catchment places of the seasonal surface runoffs from varlous plateaux and mountalnous regions and also become the catchment zones of underground runoffis. Due to the sparse rainfall and the strong evaporation, the river courses turn very wide and they get very falntly dissected. The undereround runoffs flow very slowly and in the course of their slow flowing, they are gradually growing mineralized, thus forming the hlghly minerallzed water.Yet; some sinkholes which are distributed like strings of beads can directly receive the supply of the rainfall. Their water quality and level change according to the seasons. Therefore, they have become the main water sources for the supply of the livestock on the pastoral areas.

III. Meteorology and Hydrogeology

The Northern land of Somalia, under the influence of the dry northwest monboon, is quite arid with sparse rainfall. It falls into the catagory of the tropical continental monsoon climate region. The mean temperatures of the year vary from $24^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ with the lowest lemperature occurising in December and January, (The temperature drops below $0^{\circ} \mathrm{C} \ln \operatorname{Erlgavo}$) and Whth the haghest temperature occurarif in Jilly ind Auguist (The mean temperature of July reaches irs high as $41.7^{\circ} \mathrm{C}$ in Berbera). According to the supersesaiou of the fer and $S W$ monsoons, the year can be divided into four seecong, namely,
(1) the dry-hot season (December to March), which is called locally Jllal. During this season, the northeast wind blows rampant; the cllmate becomes extremely arid and hol; rivers turn dry and herbage grows wilhered; water and grass are in urecnt want. So drought and epidemic diseases are very liable to occur; (2) the heavy-ralny season (April lo June) which is roughly known as Gu. In this season, with the northeast wind receding, there appears lemporarily a windle日s period. It 1 the major ralny season; (3) the dry season (July to September), also called Hugal, during which thexe is a rampancy of the southwest monsoon wilh arid hot weather and little rainfall; (4) the light-rainy season (Octover to november), which is also known as Der. In this season, with the northwest monsoon receding,there appears mother temporary windless period The temperatures drop and the quantity and the requency of the rain 18 both less great than in the heavy-rainy geason. The annual rainfall ranges from 300 to 500 mm , with the least rainfall in Barl --- usually 10 ess than 100 mm .

The rainfall in this area ls typlcally characterized by "the desert storm". It pours down with the arrival of the cloud and with the passing of the rain, the sky becomes as clear as a mirror. During the years 1984-1986, the Northern Somalia has had plentiful rainfall so that the cattle; sheep and camals have a vexy high reproduction.

Most rivers in this area are seasonal ones which are dry usually but which function for draining flood after the rain. Several handreds of the rlvere in the Northwest Region and on the north side of the mountainous area are all included in the hydrografic net of the Gulf of Aden. With steep slopes, the swlft current flows over the unflxed rlverbeds into the sea. Under general circumstances, the river water mostly infiltrates into the river bank beach and lakes shape of undercurrent. itiongaig to the hydrofraphic net of the Indlan Ocean, the lug ther-rugal river and the Daror river have their sources in the forthern momitatus fegion or in the plateau
of the Northern Somalia, with the upstream xiver beds wide and shallow, and with the midstream and downstream beds even wider. Therefore, it usually becomes the flooded plain.

- Only in the access section to the sea are the river beds obviously downcut. Because of the sluggishness of the runoffs and the vertical evaporation, the underground water is gradually mineralized, thum composing the highly mineralized water which is undrinkable by the population and the livestock.

Section Two Regional Geology and Hydrogeological Condition
I. Strata

The exposed strata in this area are mainly the Pre-Cambrian metamorphic system, Jurassic and Cretaceous gystems of the Mesozoic Eri and the Tertiary and the Quaternary systems of the Cenozoic Era. There is an extrusion of the volcanic rock of the Quacternary along the clastic zone in the Northern mountalnous region. They will be expounded in detalls respectively as follows:

1. Pre-Cambrlan metamorphic rocks

They are majorly distributed in the HargeisarRegion and in the mountainous area of the Northern Somalia, which are composed of quartz-feldspar gneiss, hornblende-feldspar gneiss, crystalline schist and phyllite. Intruded into them is such igneous rock body as granite gabbro, diorite, and quartz vein. They had been vehemently weathered and razed before the sediments of the Mesozoic Era.
2. the strata of Jurassic system

This set of strata is very little exposed in this area. At its bottom are gravel stone, sandstone, and limestone interbedded with mud.At its mid-upper pirt ile vesy thick sedimentary deposits of carbonate rocks containing many marine fossils.
3. the Nubi sandstone of the Cretaceous

This layer is mainly within the Hargeisa Region and Burao Region with the western part the thickest--reaching $170-300 \mathrm{~m}$: At its bottom $1 s$ parti-coloured claystone; at its lower part is coarse-grained sandstone with gravels; at its midpart is feldspar-quartz sandstone; at its upper part is siliceouscemented fine sandstone; at its mid-upper part is quartzite and on its top is yellowish shale with shelly fossils.
4. the Auradu limestone of Lower Eocene of the Tertiary Period It is mainly dispersed in the mountainous area of the Northern Somalia and the Haud platedu, with a thickness of 120200 m . At its bottom is gravel limestone; at its lower part are crystalline limestone and biogenetic limestone; at its midpart is Imestone with chert nodules (their dlametexs range from 40 to 50 cm), at 1 ts upper part is argillaceous linestone and mudstone.

5: the gypsolyte of the Taleh suite of M1d-Eocene of the Tertiary Period
It is extensitely exposed in the Ainabo and Las Anod-Taleh belt and the Halin-Erl Afwein belt. Around the Taleh village it is exposed more thoroughly. At its lower part is the thick gypsolyte interbedded with greyish green shale; at its midpart is gypsolyte of medium thickness with the interlayer, of brown clay rock and at its upper part is the yellowish green shale With interlayers of crystalline gypsolyte. The occurrance i_{s} almost horizontal and through the erosion and denudation, it takes shape of table-1ike and mamilary hills with plenty of sinkholes along runoff belts which are like strings of beads. These sinkholes directly get the supply of the rain so they become the chief water sources for the local population and the livestock.
6. the Karkar-suite dalomitic limestone of Jutec Locene of the Tertiary Period

- 9 -

It is disrersed over the ton of the Sawl plateau and over the plteau on both eides of the Nugal river valley. At its lower part occur the greyish white and greyish green mudstone and soarl interbedded with calcareous sandstone which contain plentiful shelly fossils; at its mid-upper part occur the greyirh white dolomitic limestone, and the dolomitite of chert stripes interbeddej with the greyish white mudstone.
7. the sedimentary deposit of the Pleistocene of the Quarternary
This kind of deposit is composed of the Pre-fuarternary deposits through erosion, denudation and removement. Its lithology and thickness vary greatly with its depositional environment.

Western Part. In the river valleys of the metamorphic region to the north of Hargeisa, there exists a set of loose deposits of gravel sandstone, clay, sandy loam. It exceeds 200 m in thickness, thus forming the buried old channel, which gerves as the main water source for Hargeisa.

Eastern Part. In the downcast river valleys of Ber-grassland-Waridad-Ban Ade-Tug Dher, there exists a set of greyish white gypsiferous fine sandstone, gravel-cemented stone, brown, grey-black mudstone, secondary gypsolyte and etc. which are $160-180 \mathrm{~m}$ thick.

In front of the Bossaso mountains, the Daban gravel stone forms a very thick alluvial fan with pebble gravels through erosion and transportation.
8. the sedimentary deposit of the Holocene of the Quarternary

This deposit orlgins from the alluvial-proluvial, marine and eolian sediments, whose lithology contains gravel sandstone, secondary cemented gravel stone, :ifcondery gypsolyte and etc. They are mostly aispersed along the modern river beds and over the beach region, containirg vicose water. They
grequently become the important drinking weter sources in the pastoral areas.
II. Structure and Tectonics

This area is part of the Eastern African-Arab Platform and its tectonism belongs to the plalform type mainly characterized by the high-angled positive dislocation and the unobvious plicated structure.

The basement formed by the pre-Cambrian metamorphic rocks was razed. Not until the Mesozoic Era did the Jurassic start sinking to receive the sediments. At ils bottom was a set of sand gravel stone witn interlayers of mudstone and Ilmestone. During the Mid-Upper Jurassic, the carbonate rock was continually deposited lo hundreds-of-meters thickness, containing plenty of marine fossils (brachiopod, cephalopod). In the end of the Jurassic, with the regression of the sea, the basement rose and denudated.

At the beginning of the Cretaceous, the basement sank once again but with various regressions, it formed the Nubi sandstone (Jesomma sandstone). And at the same time, it formed a series of NN-E faults along the Indian coast with the west side upwerping and the east side falling. Thus the downcast belt of the Indian Ocean was formed.

From the Palaeocene to the Eocene of the Tertiary Period, the North African 01d Land rose and fell for another few times which caused the transgression and regression of the * sea, thus forming the Aurodu-suite gravel limestone, the thick limestone and the chert nodule limestone of half-dejithed and shallow marine facies. Apart from these, it also formed the Taleh-suite gypsolyte, marl, and mudstone of the lagoon facies. In the mid and later period of the Eocene, it sank once more, which caused the rytensjve trensgression of the sea, thus forming the karkar-suite biogenic limestone of the marine fixcies.

During the Oligocene and the iviocene, the joxn of Africa was extensively upwarping and developing in the NEE direction along the coasts of the Gulf of iden. A series of positive fauts formed the graben of the Gulf of iden with a dron of 2000 m. Meanwhile, it developed in the Niv direction into another series of faults with translational role, which are known as the tectonic zones of the Red Sea system, for example, the Sheikh zone, Erl Afwein zone and the Bossaso zone. The Hudun fracture was shaped approximately in this period, which caused the downcast river valleys of the Hudun mountain and TuE Dher.

The NEE-direction and the Niroirection factures along the coast of the Gulf of sden resulted in the extrusion of the volcanic rock, forming a set of basdlt, rhyolite and andesite of the exposion of thermcales. The volcanic activity continued until the begining of the Quarternary.

III. Acquifer Formation

1. pore-crevice aquifer formation of the Nubi sandstone The Nubi sandstone is composed of feldspar-quartz fine sandstone or medium- and coarse-grained sandstone with gravels. The roundness is very elaborate and it is with excellent infiltration. The water of this wattex-bearing formation on the pledmont zone falls into the catagory of underground water while, in Burao, it is grouped into the type of pressure water. Therefore, the water quality there is fine and the mineral intensity is about $1 \mathrm{~g} / 1$. The water discharge of a single well is 200-500 m3/day. The Nubi sandstone in Hargelsa City and in the area to its south is the most dereloped but the water quallty is poor. As the water contains a mineral intensity of $3-5 \mathrm{~g} / \mathrm{I}$, it is unfit for drinking.
2. the karst crevice-cavern aquifer formation of the faleh gypsolyte

Thick and medium-thicknessed sardstones, through tectonism and weathering, have many well- erow joints and crevices: As they have been corroded by the rainfall and the seasonal flqod, they often form various-scaled sinkholes and caverns with the water quality as the type of SO4.cl-CaMg. Its mineral intensity and its wateriness are determined by the scope of the water catchment and by the circulation of the water.

3: the crevice-cavern aquifer formation of the Karkar-suite dolomitic limestone

In the Karkar-suite limertone, muded limertone, calcareous sandstone, dolomite, there are well-grown crevices and corroded holes. In both the valleys and the cutoff and semi-cutoff hollows on the Sawl plateau occurs the crevice-pore-cavern water, whose level is comparatively deep and whose watexiness is somewhat ungreat. The deepest level can reach 300 m (the well depth is 420 m in Rako-Kadmo). The yield of a single well is reached of $60-200 \mathrm{~m} 3 /$ day with fine quality and a mineral intensity of $1.0-1.7 \mathrm{~g} / 1$
4. the crevice aquifer formation of the gravel sandstone of the buried old channel

The alluvial deposit in the river beds of Hargeisa Region is quite developed. In the burded channels, the deepest alluvial deposit surpasses 200 m . The total thickness of the gravel sand, medium-1 and coarse-grained sand reqaches 20-90 m. The water discharge of a single well is $800-1500 \mathrm{~m} 3 /$ day (2214 m3/day). The water quality is the HCOT-Ca type with a mineral intensity of $0.2-0.5 \mathrm{~g} / \mathrm{I}$. It has become the precious water source for supplying the city population and the livestock.

In the downcast river valleys of the earler pert, oconr the slightly cemented sandstone,gravel stone and gypsolyte containing pore water and crevice-cavern witer. Hecause of
" the slow runoff ard intense verical evaporation, it gets highly mineralized and undrinkable for the population and

- the livestock. The pore water in the proluvial fan in front of the Bossaso mountain has a future for development.

5. the pore water of the alluviun in the modern riverbeds and the vadose water of the marine sediments and of the oelian sand barriers and sünd hills have a fine quality, which are shallowly buried, possessing a brilliant future

- for development. The wells can be dug by hand and can serve as the water source for the scattered population.
- Besides, the bed rock crevice water in the tectonoclastic zone or the weathered clastic zone of metamorohic rocks
- and granite should not be neglected. In the suitable geological and geomorphic conditions, it can also become meaningful water source for supply. Though the karat of the Aurodu limestone is quite developed, it is a water infiltrating formation but not an aquifer formation because its exposion
-topography is higher.
- Section Three Division of Hydrogeologlcal Sections
. I. The Hydrogeological Section of the Alluvial-proluvialMarine Coastal Plain of the Gulf of Aden
"1, the inferior section of the pore water of the alluvialproluvial gravel sandstone of Zeila-Berbera
" Many rivers originating from the southern mountainous area roam into the sea and they have formed the piedmont alluvial -plain. The buried channels and the modern chamels are deposited with sand and gravel sandstones in various depths. In the normal year the sersional surface runoffs mostly turn into the underground runofis. Ille uncexground water level is
getting, from deep to shallow from the peidmont to the beach. The water quality is affected by the tides within the scope of $5-10 \mathrm{~km}$ near the sea and gradually gets mineralized. The underground water in this section has a bright future for development.

2. the inferior section of the pore water of the pebble sandstone of the Bossaso proluvial fan
As the Daban gravel stone on the pledmont in the northern part of Bossaso was greatly eroded, it was redeposited to form the piedmont proluviel fan with pebble gravel. The "rainfall in the normal year is infiltrated to become the undercurrent. This water source can be under consideration , for the supply for Bossaso.
II. The Hydrogeological Section of the Mountainous Area of the Northern Somalia
-1. the inferior section of the crevice water of the gravel sand of the river valleys

- The metamorphic basement between Ged debleh and Sheikh is covered with a set of alluvial deposits. The modern : river beds and the buried channels are deposited with sand and gravel sand in various depths, containing plentiful pore water. Take Ged debleh water source for example, the yield of a single well is $2210 \mathrm{~m} / \mathrm{d}$ day. In the metamorphic weathered clastic zone or in the metamorphic weathered "tectonoclastic zone, there is also a watery sector which contains bedrock crevice water. It can serve as the water msource for the population point or for the small towns. Generally speaking, it is preferrable to dig shallow wells _by hand, (equiped with hend-pumps). In case any wells be drilled in the tectonoclastic zone. there should be a large scope of enoufh water catchment.

2. the inferior section of the kirst pore-caivern water of
limestone and gypsolyte
Owing to the fine development of the NW fault zone, the , karst crevices and caverns along the fault zone or along the secondary fractured zone in the river valleys are comparatively more developed. They have a great water yield and their water quality is determined by the lithology of their supply regions. For example, the Hulur well is drilled in the gypsiferous clastic zone, so its yield is $800-1000$ $\mathrm{m} 3 /$ day with a mineral intensity of $3.4 \mathrm{~g} / \mathrm{l}$.
III. The Hydrogeological Section of the Northern Flateau of Somalia
3. the Hargeisa-Burao inferior section of the pore-crevice water of the Nubi sandstone
The Nubi sandstone in Hargeisa Region is buried 268 meters deep with a thickness of 370 m . The water level is deep and the quality is poor, so it is unfit for drinking.

In the vicinity of Burao, the Nubi sandstone is distributed from the northwest to the southeast looking like a horst. Its EW width reaches $15-20 \mathrm{~km}$; its depth gets to $100-150 \mathrm{~m}$ with the water level $70-150 \mathrm{~m}$ deep. The discharge of a single well is 800-500 m3/day with a mineral intensity of about $1.0 \mathrm{~g} / 1$.
2. the inferior section of the pore water of Tug Dher-Nugal river valleys and of the iiighly mineralized karst cavern - water of gypsolyte.

- In the downcast river valleys on the eastern side of the Waridad-Ban Ade-Hudun fault, below the depth of $90-120 \mathrm{~m}$, there is a set of sediments of fine cundstone, gynsiferous sandstone and clay rock, which are sligllily corsolidated end
which have a poor witeriness. lecaluee of the slow runoffs, the horizontal mode of discharge is rather awkward. The underground water is gradually mineralized, falling into the Cl-Na, Cl-NaMg Ca, type of hlghly mineralized water. In the secondary gypsolyte and the secondary gypsiferous mudstone occur many well developed sinkholec. The water level, quantity and quality vary obviously with the ruppliment of the seasonal rainfall. These veried sinkholes become the water sources for the supply of the local population and the livestock.

3. the inferior section of the kaxst crevice-cavern water of

- the Karkar limestone on the Sawl plateau

The Karkar-suite strata are extensively exposed in the
. Sawl plateau. At its uper part occur dolomitic limestone and chert-striped dolomite rock, which are hard, brittle, with well developed joints and crevices. It is easy for them to receive the supply of the rainfall. At its mid-lower part

- exist the mudstone interbedded with muded limestone,
calcareous sandstone and the thick mudstone and shale. Under the favourable geomorphic conditions (for example, the
r river valleys, or semi-cutoff hollows), this aquifer formation often contains a cextain quantity of karst crevice-pore
-water. The depth of its water level varies tremendously from 60 m to 140 m . (In some places, the water level is 300 m Ldeep, for example, in Rako Kodma, the well is 420 m deep). The water discharge of a single well is $80-200 \mathrm{~m} /$ day with fine water quality. It is fit for drinking. In the pastoral areas with exuburant herbage and sparse rainfall, it is very dear and precious though with asmall water quantity.
+. the inferior section of the karst crevice-icvern water
\leq of limestone and gypsolyte in the niedmont river valleys Between the mountainous meat in the Norta and the Savil
- plateau is developed a series of seasonal rivers, which are originated in the northwest but gradually turn in the south -direction or in the east direction. In the rainy season, the fload from the mountainous area is gathering there and then flowing dispersively into the vast grassland. In some sectors of the rivers occur the exposed stratum and the minute faults, thus forming the watery sector of the karst crevice-cavern water. Take Erl Afwein and Darar weyne for example, the water quality and quantity are determined by the lithology of its -aquifer formation.

लonclusion

1. In the northern nart of Hargeisa Region or in the inferior section of the metamorphic crevice water and of the pore water of the gravel stone of the river valleys, the soil is very fertile. The rainfall is sufficient, so there exists a potentiality for the agricultural development. The metamorphic clastic zone and the buried channels are rich in the munderground water source which can serve as the water source for the supply of the sinall towns, for the water quality is mery good. In view of the above mentioned facts, it is preferrable that there should be a detailed investigation and exploration. With regard to the gravel stones in the buried channels, it is very effective to have an exploration of vertical electrical sounding. As for the buried metamorphic "olastic zone, it is better to adopt the exploration of the. "quadripole-electrical profiling".
⒉ The pore water in the Nubi sandstone in the vicinity of Burao has a good quality and quantity. It will play a very mportant part in the development of Burao City. fis for the distribution direction and scope of the Nubi sandstone, especially the extension scope of the $N \%$ and $S i$ positions, there should be another further invertigetion ant exisoration.
2. Ci the vast lush plate au of Sew, the Ranker limestone aquifer formation has a minority in being considered in order to tackle the problem of water supply for the pasture. Wells should be drilled in the valleys ind hollows which have a large scope of water catchment. 4. Cr both sines of the Aimilo-iorove highway and on the area to the south of the highway occur a series of N: |river valleys in which there are sinkholes on surface like strings of beads. If wells as drilled to the depth of $\int_{\text {water }}^{100-200 ~ m}$ on the runoff zone, there is hope to obtain the water source of ammoniate quality.
3. In the Tue Dher-fugel downcast river valleys, the deepwater quality is poor, so it is unfit for drilling deep wells. As the shallow water hes a great supersession, it is Easy to receive the suppliment of the rainfall. It is preferrable to dig shallow wells on the runoff zone. 1

Hell No: K11
Well location: at $1215 \mathrm{~m}, 39$ degrees of Well k7, जed-debleh, Hargeisa.
Construction date: December 6Lh, 1981 to January 10th, 1982 1, Lithological profile:

3 , diata of cimple water uuality analyris:
1, physical property: colorless, odourless, smelless, clear. 2, Chemical composition:

$$
\begin{array}{cc}
\mathrm{K}^{\circ}+\mathrm{Na} \cdot & 105.8 \mathrm{mg} / 1 \\
\mathrm{Ca} \cdot & 46.09 \mathrm{mg} / 1 \\
\mathrm{Mg}{ }^{\circ} & 35.24 \mathrm{mg} / 1 \\
\mathrm{Cl} & \\
\mathrm{SO}_{4}{ }^{\prime} \mathrm{\prime} & 63.90 \mathrm{mg} / 1 \\
\mathrm{HCO}_{3}{ }^{\prime} & 33.62 \mathrm{mg} / 1 \\
\mathrm{CO}_{3}{ }^{\prime} & 262.39 \mathrm{mg} / 1 \\
& 90.00 \mathrm{mg} / 1
\end{array}
$$

3, Total dissolved solid: $0.506 \mathrm{~g} / 1$
4," Total hardness: 15.58 (German hardness)
5. Perminent hareness:

6, Temporary hardness: -
7, PH value: 8

Well No: K12
Well location: at 5074 m , 32 degrefe of Well K11, Ged- debleh, Hargeise Construction date: January $30 t \mathrm{~h}, 1982$ to February 20th,1982
1, Lithological profile:
1, 0. - 3m: medium-coarse sand:light yellow-white,loose.
2, - 7m: clayey sand:brown-yellow,slightly consolidated'.
3. - 18.34m: medium-coarse rand:light brown,loose.

4, - 26.00m:clayey sand:light brown-yellow,princlpal ingredient : clay/silt,slightly consolidated.
5, - 41.51m: gravel with sand:light brown-yellow,1-2cm in diameter, good sorting,loose.
6, - 58.76m: clayey sand:lleht brown-yellow,principal ingredient clay/silt,slithtly consolitated.
7. - 63.36m: arenaceous clay:light brown with lightgreen, principal ingredient:cley/silt,slightly consolidated.
8, - 70.98m: fine sandilight brown with grey-green,loose.
9, - 73.00m: arenaceous clay.
10, - $90.43 \mathrm{~m}:$ mica schist: grey-green with white, intense weathering,harder lithological character on the bottom.
2, data of pumping test:
1, well depth: $51.66 m$
2, depth of screen: 9-41.51m
3, pumping equipment: air compressor
4, static water level: 6.05 m
5, drawdown:
6, well yield: 10.50 m

7, stability time: 42 hours and 25 minutes
3, data of simple water quality analysis:
1, Physical property: colorless, odourless, smelless, clear.
2, Chemical composition:

$\mathrm{K}^{+}+\mathrm{Na}$	$117.3 \mathrm{mg} / 1$
$\mathrm{Ca}{ }^{-}$	$40.08 \mathrm{mg} / 1$
Mg ${ }^{\text {• }}$	$25.54 \mathrm{mg} / \mathrm{l}$
Cl^{1}	$21.30 \mathrm{mg} / 1$
$\mathrm{SC}_{4}{ }^{\prime \prime}$	$153.70 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$268.49 \mathrm{mg} / \mathrm{l}$
(10: ${ }^{1}$	$30.00 \mathrm{mg} / \mathrm{l}$

3. Total dissolved solids:	$0.52 \mathrm{~g} / 1$
Total hardness:	11.50 (German hardness)
5, Permanent hardness:	-
- ' Temporary hardness:	-
7, PH value	7.8

Well No: K13
Well location : at 3750 m , northeast of well K11, Ged-debleh, Hargeisa Construction data:March 1st,1982to March 19th, 1982
1, Lithological profile:
1, 0 - 3m: medium-conrse sand:Iight yellow-white, with small gravel,loose.
2, - 8m: arenaceous clay:brown-yellow,principal ingredient clay/silt,slightly consolidated.
3, - 13m: clayey sand:brown-yellow,principalingredient:clay/ silt,slightly consolidated.
4, - 15m: medium-fine sand:brown-yellow, slightly consolidated.
5, - 24m: clayey sand:brown-yellow, principal ingredient: clay/silt,slightly consolidated.
6, - 36m: medium-coarse sand:brown-yellow,with small gravel loose.
7, - 41m: clayey sand:brown-yellow with grey-green, principal ingredient: clay/silt,with high content of sand.
8, - 44m: medium-fine sand:brown-yellow with white,with small gravel,loose.
9, - 56m: clayey sand:brown-yellow, consolidated, principal ingredient:clay/silt.
10, - 62m: medium-coarse gand:grey, with gravel,loose.
 clay/silt,slightly consplidated.
12, $-764 \mathrm{~m}:$ medium-coarse sand:light yellow, grey, with gravel loose.
13, - 87.Om: arenaceous clay b brown-yellow,principal"ingredient: clay/ailt,slightly consolidated.
14, - 95.4m: medium-coarse sand:grey, with small gravel,loose.
15. $-101.31 \mathrm{~m}:$ granitic gneiss : flesh red.
2. pumping test data:

1, well depth : 93.75 m
2, depth of screen: 24-87.75m
3, pumpling equipment: air compressor
4, static water level: 10.42 m

- 24 -

5, drawdown:
22.45 m
ϵ, well yield: $\quad 968.4 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7, stability time: 42 hours and 10 minutes
3, data of simpl water quality analysis:
1, Physical property: colorless,odourless,smelless, clear.
2, Chemical composition. :
$\mathrm{K}^{*}+\mathrm{Na} \cdot$
$\mathrm{Ca} \cdot$
Mg ${ }^{\prime}$
C1'
$\mathrm{SO}_{4}{ }^{\prime \prime}$
HCO_{3}
$\mathrm{CO}_{3}{ }^{\prime}$
3. Total dissolved solids:
4. Total hardnese:
9.0(German hardness)
5. Permenent hardness:

6, Temporary herdness:
7, PH value:
$0.46 \mathrm{~g} / 1$
$126.04 \mathrm{mg} / \mathrm{l}$
$32.06 \mathrm{mg} / \mathrm{I}$
$19.46 \mathrm{mg} / 1$
$63.19 \mathrm{mg} / 1$
$14.41 \mathrm{mg} / 1$
$402.73 \mathrm{mg} / 1$
-
-
8

Well No: K14
Well location : at 149%, 34 degreas of well kil, Ged-debleh,Hargeisa Construction date;Aprill 6th, 1982 to April 30 th, 1082
1, Lithological profile :
1,0-3.5m: medium-coarse sand.
2, - 15.85m: arenaceous clay:light brown-yellow, principal ingredient:clay/silt,slightly consolidated.
3, - 18.25m: clayey sand.
4, - 21.15m: medium-fine sand:light brown-yellow,loose.
5, - 28.35m: arenaceous clay:brown-red,principal ingredient: clay/silt,slightly consolidated.
6, - 30.60m: medium-fine sand:brown-yellow,loose.
7, - 43.27m: arenaceous clay:light brown-yellow, slightly concolidated, principal ingredient:clay/silt.
8, - 59.00m: clayey sand:light brown-yellow,with high content of fine sand and clay/silt,slightly consolidated.
9, - 64.00m: medium-coarse sand:grey-yellow,grey,loose.
10, - 76.00m: clayey sand:light brown-yellow,with high content of clay/siltslightly consolidated.
11. - 87.00m: medium-coarse sand with gravel:brownGyellow, gra vel diameter:1-3cm, loose.
12, - 98.00m: clayey sand:brown-yellow with slightly greygreen, with fine sand,slightly consolidated.
13, $-126.00 \mathrm{~m}:$ medium-coarse sand with gravel. :light brownyellow, with gravel, $1-3 \mathrm{~cm}$ in diameter consolidated.
14, $-132.0 \mathrm{Cm}:$ clayey sand:brown-yellow,slightly consolidated.
15, -143.00m: medium-coarse sand with gravel:grey,light brownyellow, loose.
16, $-144.92 \mathrm{~m}: ~ c l a y e y ~ s a n d . ~$
2, Pumping test data:
1., well depth : 142.24 m

2, depth of screen :
3, pumping equipment :
59-139.24m

4, static water level:
air compressor

5, drawdown :
6, well yield :
7, stability time :
23.20 m
11.54 m
$153 \mathrm{~mm}^{3} / 24 \mathrm{hrs}$
40hours and 6 minules

3, Data of simple water guality analysis :
1, Physical property: colorless, odourless, smelless, clear. 2, Chemical comppsition :

$\mathrm{K} \cdot+\mathrm{Na} \cdot$	$140.30 \mathrm{mg} / 1$
$\mathrm{Ca} \cdots$	$68.14 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\prime}$	$23.1 \mathrm{mg} / 1$
Cl^{\prime}	$71.00 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$12 \mathrm{~S} .68 \mathrm{mi} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$336.12 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$33.00 \mathrm{mg} / 1$

3, Total dissolved solids:
$0.64 \mathrm{~g} / 1$
4, Total herdness:
14.7(German hardness)

5, Permanent hardners:
6, Tempprery hardness: 14.7
7, PH value : 77.6

Well No : K15

Well I ocation : at 950 m, north of Well K14, Ged-debleh,Hargeisa Construction date: May 27 th, 1982 to June 11 th, 1982
1, Lithological profile :
1, 0 - 22.00m: clayey sand with thin layey of sand.
2. - 28.00m: fine silt.

3, - 34.50m; arenaceous clay.
4, -. 38.00m: coarse gravel with sand.
5, - 44.50m: arenaceous clay.
6, - 56.00m: clayey sand with thin layer of sand.
7, - 64.00m: coarse gravel with sand.
8, - 69.00m: clayey sand.
9, - 72.00m: medium sand.
10, - 83. $\theta 0 \mathrm{~m}:$ coarse gravel with sand.
11, - 87.00m: pelitic medium-fine sata.
12, - $94.00 \mathrm{~m}: ~ c l a y e y ~ s a r d . ~$
13, - 97.00in: fine sand.
14, - 115.00m: coarse gravel kitu eand.
15, - 119.00m: clayey siand.

2. Pumping test data:
1, well depth :
117.79 m

2, depth of screen:
3, pumping equipment:
34.50-115.0m

4, static water level:
dir compressor

5,drawdown :
6, well yield :
23.02 m

7, stiability time :
16.65 m
$1054 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
3. data of simpl water quality analisis :
. 1, Physical property :colorless, odourless, smelles, clear.
2, Chemical composition:

$\mathrm{K}^{\prime}+\mathrm{Na}{ }^{-}$	$103.50 \mathrm{mg} / 1$
$\mathrm{Ca} \cdots$	$46.09 \mathrm{mg} / 1$
$\mathrm{Mg} \cdots$	$31.62 \mathrm{mg} / 1$
$\mathrm{Cl}{ }^{\prime \prime}$	$72.10 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$76.85 \mathrm{mg} / \mathrm{l}$
$\mathrm{HCO}_{3}{ }^{\prime}$	$317.30 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$12.00 \mathrm{mg} / 1$

3, Total dissolved solids : $0.5 \mathrm{~g} / 1$
4, Totcil hardness:
13.74 (German hardness)

5, Permanent hardness:
6, Temporary hardness:
0

7, PH value :
13.74
8.4
-Well No. : "K16
Well location: at850m, southwest of Well K14,Ged-debleh,Hargeisa
, Construction date: June 23rd, 1982 to July 10th, 1982
1, Jithological profile:
1,0 - 8.00m: clayey sand.
2, - 21.00m: arenadeous clay.
3, - 29.80m: fine silt.
4, - 32.40m: basalt.
5, - 37.00 m : medium coarse sand.
6, - 49.ccm: clayey sand.
7, - 56.00m: arenarieous clay.

8, - 72.00 m : silt intercalated with thin layer of clayey sand
9, - 77.00m: clayey sand.
10, - 80.00m: flne sand.
11, - 86.00m: clayey sand.
12, - 90.00m: fine sand.
13: - 99.50m: interbedded with medium sand and clayey pand.
14, - 109.0 (m: clayey sand.
15, - 122.00m: medium coarse sand with gravel.
16, - 129.00m: arenaceous clay.
17, -133.00m: medium-coarse send with gravel.
18, - 137.00m: clayey sand.
19, - 153.00m: medium-coarse sand with gravel.
20, - 154.10m: granitic gneiss.
2, Pumping test data :
1,well depth : 148.63 m
2, depth of screen : 62-145.63m
3, pumping equipment: air compressor
4, static water level: $\quad 30.00 \mathrm{~m}$
5, drawdown :
5.88 m

6, well yield :
$1679 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
$7, s t a b i l i t y$ time : 4 thours and 20 minutes
3, data of simpl water quality analysis :
1, Physical property : colorless, odourless, smelless, clear
2, Chemical composition :

$\mathrm{K}^{\prime}+\mathrm{Na} \cdot$	$94.30 \mathrm{mg} / \mathrm{I}$
$\mathrm{Ca}{ }^{\prime} \cdot$	$42.08 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\prime}$	$38.91 \mathrm{mg} / 1$
Cl	$81.65 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$9.61 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$360.02 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$30.00 \mathrm{mg} / \mathrm{l}$

3. Total dissolved solids : $0.5 \mathrm{~g} / \mathrm{l}$
4. Total hardness : 14.86 (German hardness)

5, Fermanent hardness :
6, Temporary herdness : 14.86
$7, \mathrm{PH}$ value : 8.4

```
Well No.
Tu - 1 Tug Der Region.
```

Nell location: at 1000 m , southeast of Dubur, Sheikh District

Construction date: November 20th, 1982 Lo December 6th, 1982 , Lithological profile:

1. 0-14.00m: medium sandstone: light yellow, loose, ingredient: quartz, feldspar, pelitic cementation.
2. - 24.50 m : rock clay of mixed colors: blue-grey and rusty into mixed colors,with gravel, close texture, plastic.
3. - 26.50m: sandstone
4. - 30.50m: rock clay: blue-grey, with gravel.
5.- - 33.50m: fine sandstone: grey-yellow, with pellite.
5. - 36.00 m : rock clay.
6. - 37.20m: coarse sandstone: ingredient: quartz, feldspar.
7. - 45.00m: rock clay of mixed colors: purple, with gravel, plastic.
8. - 48.17m: granite: flesh red, ineredient: quartz, feldspar, mica. granulitic texture, massipe structure, hard.

2, Pumping test data:

1. well depth: 45.97 m
2. depth of screen: 3.41-37.32m
S.parine equipment:
air comprssor
3. Static witer Jevel: $\quad 3.90 \mathrm{~m}$
4. drawdown:
2.4 .90 m
5. well yield:
$136.20 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
6. stability time: 24 hours

3, Data of simple water quality analysis:

1. Physical property: colorless, odourless, smelless, clear.
2. Chemical composition:

$\mathrm{K}^{*}+\mathrm{Na}{ }^{\text {- }}$	$253.00 \mathrm{mg} / \mathrm{l}$
$\mathrm{Ca} \cdot{ }^{\text {a }}$	$34.07 \mathrm{mg} / \mathrm{l}$
Mg ${ }^{\text {. }}$	$57.15 \mathrm{mg} / 1$
Cl'	$173.95 \mathrm{mg} / \mathrm{l}$
SO. ${ }^{\prime \prime}$	$216.14 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$366.12 \mathrm{mg} / \mathrm{l}$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$60.00 \mathrm{mg} / \mathrm{l}$

3. Total dissolved solids:
$0.98 \mathrm{~g} / 2$
4. Total hardness:
17.95 (German hardness)
5. Permanent hardness:
1.12 (German hardness)
6. Temporary hardness:
16.83 (German hardness)
7. PH value 8.4

4, Well facilities:

1. type of casing: seamless pipe, thread connection. standard: 168 mm (outside diameter), 152 mm (inside diameter)
2. pump brand: Caprari E6R 30/36 + C615 (Italy) standard: I/i 100/230 m355/170
3. generator brand: DEUTZ F31912 (Germany) standisc: miI , 5kW f:6270 15001/min
4. discharge mpe: \quad "iron ripe
depth of purap: $\quad 44.50 \mathrm{~m}$
5. water tank structure: reinforced concrete volume: $5.5 \mathrm{~m}^{3}$
6. water pond structure; reinforced concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
7. pumping house structure: galvanized iron sheet and timber frame, area: $9 \mathrm{~m}^{2}$
```
Well No. : IU - 2
```

Well location : at 2500 m , southwest of Dubur, Sheikh District, Tug Der Region.

Construction date : December 14 th, 1982 to January 11 th, 1983 -1, Lithological profile :

1. 0 - 6.40m: clay: brown, with gravel and sand.
2. - 18.00m: gravel with sand: ingredient: quartz, feldspar and black magnetite, rounded gravel.
3. - 22.00m: clay with gravel: grey, angular gravel.
4. - 52. OOm: medium-fine sandstone: light yellow-brown, with small gravel, intercalated with multilayer mudstone.
1. - 60.00m: mudstone of mixed colors:grey and mixed with purple, brown and brown-yellow.
2. - 76.00m: medium-coarse sandstone; light yellow-brown, principal ingredient: quartz, angular.
$\because \quad . \quad 2 . C C m: ~ m b d s t i o n e ~ o r ~ m i x e d ~ c o l o r s: ~ p u r p l e-g r e y, ~ w i t h ~$ sontent or sand.
3. -96.0Cr: mediuri sandstone: light yellow-brown,
poor.sorting, with gravel.
4. - $117.28 \mathrm{~m}:$ mudstone of mixed colors: purple-grey, apricot, rusty.

2, Pumping test data:

1. well depth:
106.05 m
2. depth of screen:
5.33-97.27m
3. pumping equipment:
air compressor
4. static water level:
49.10 m
5. drawdown:
11.35 m
6. well yield:
$94.56 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7. stability time:
24 hours

3, Data of simple water quality analysis:

1. Physical property: colorless, odourless, smelless, clear.
2. Chemical composition:

$\mathrm{K} .+\mathrm{Na} \cdot$	$154.10 \mathrm{mg} / \mathrm{l}$
$\mathrm{Ca} \cdot$	$28.06 \mathrm{mg} / \mathrm{I}$
$\mathrm{Mg} \cdot$	$21.89 \mathrm{mg} / \mathrm{I}$
$\mathrm{Cl}{ }^{\prime}$	$60.35 \mathrm{mg} / \mathrm{I}$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$139.29 \mathrm{mg} / \mathrm{I}$
$\mathrm{HCO}_{3}{ }^{\prime}$	$213.57 \mathrm{mg} / \mathrm{I}$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$54.00 \mathrm{mg} / \mathrm{l}$

3. Total dissolved solids:
$0.56 \mathrm{~g} / \mathrm{I}$
4. Total hardness:
9.00 (German hardness)
5. Permanent hardness:

0
6. Temporüry hardness:
9.00 (German hardnes:)
7. PH value
8.2

4, Well facilities:

1. type of casing: seamless pipe, thread connection. standard: 168 mm (outside diameter), 152 mm (inside diameter)
2. pump brand: Caprari E6R 30/36 + C615 (Italy) standard: I/I 100/230 m355/170
.3. generator brand: DEUTZ F31 912 (Germany) standard: $34 \mathrm{HP} \quad 25 \mathrm{KW}$ A6270 15991/min
3. discharge pipe: 2 " iron pipe depth of pump: 78 m
4. water tank structure: reinforced concrete
volume:
$5.5 \mathrm{~m}^{3}$
j. water pond structure: reinforced concrete

- volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

7. pumping house structure: galvanized iron sheet and
timber frame
area: $\quad 9.0 \mathrm{~m}^{2}$

Well No.: Tu-3
Well location : at about 100 m , on the east side of the secondary, north of Burao.

Construction date: January 14th, 1984 to February 21st, 1984 1, Lithological profile:

1. 0-18.00m: arenaceous clay: brown-red, principal ingredient: clay/silt.
2. - 24.00 gravel with sand: light brown, rounded gravel, loose.
3. - 71.00m: argillaceous limestone: grey, purple, breccia texture, ingredient: argillo-calcareous.
4. - 74.00m: argillsceous sindstone: rusty yellow.
5. - 86.50m: argillaceous limestone: ingredient: argillocalcareous, plastic.
6. -88.00 m : sandstone.
7. - 90.50m: argillaceous limestones: grey, grey-green, ingredient: argillo-calcareous.
8. - 92.50m: sandstone: brown-red, rusty yellow.
9. - 124.00m: arenaceous mudstone: rusty yellow, principal ingredient: pellite, with content of sand partially.

* O. 139.00 m : sandstone: white, fine sand mainly, loose, ingredient: quartz, f'eldspar secondly.
"1. - 143.00m: mudstone: grey, ingredient: pellite, plastic.

12. - 172.00m: sandstone; light Irown-yellow, loose, intercalated with several layer of mudstone.
W. - 189.00 m : shale: rusty yel rw, frey-\{rect, grey-black,
clear bedding, with fossil.
13. - 197.00m: mudstone: grey, light, plastic.

- 15. - - 201.41m: gypsum rock: grey, grey-black, thick bedded.

2, Pumping test data:

1. well depth: 200.80 m
2. depth of screen:

124-172.00m
3. pumping equipment: air compressor
4. static water level: 103.02 m
5. drawdown:
1.62 m
6. well yield:
$220 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7. stability time:

8 hours
3. Data of simple water quality enalysis:

1. Physical property: colorless, odourless, smelless, clear.
2. Chemical composition:

$\mathrm{K}^{\circ}+\mathrm{Na}$	$164.01 \mathrm{mg} / 1$
$\mathrm{Ca} \cdot$	$118.64 \mathrm{mg} / \mathrm{l}$
Mg ${ }^{\text { }}$	$43.54 \mathrm{mg} / 1$
C1'	$342.93 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$113.83 \mathrm{mg} / \mathrm{l}$
$\mathrm{HCO}_{3}{ }^{\prime}$	$234.32 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$24.00 \mathrm{mg} / \mathrm{l}$
ssolved solids:	$0.93 \mathrm{~g} / 1$

3. Total dissolved solids:
26.64 (German hardness)

- Total hardness:
15.27 (German hardness)

う. Permanent hardness:
10.77 (litrman hardness)
7. PH value 8.
t, Well facilities:

1. type of casing: plastic pipe, thread connection. standard: $\quad 8^{\prime \prime}, 200 \mathrm{~mm}$ in diameter
2. purp brand: Caprari E6R 30/36 + C615 (Italy)
standard: $1 / 1$ 100/230 m355/170
3. generator brand: DEUTZ F31. 912 (Germany)
standard: $34 \mathrm{HP} \quad 25 \mathrm{KW}$ A6270
4. discharge pipe: 2^{11} iron pipe
depth of pump: 150 m
5. water tank structure: reinforced concrete volume: $\quad 5.5 \mathrm{~m}^{3}$
6. water pond structure: reinforced concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
7. pumping house structure: galvanized iron sheet and timber frame.
area: $\quad 9 \mathrm{~m}^{2}$
```
rell No. :
Tu-4
```

Well location: at 1000 m , south Check-point, southeast of Burao. ionstauction date: February 8th, 1984 to February 22nd, 1984

4, Lithological profile:

1. 0-25.00m: arenaceous clay: yellow-brown, ingredient:
" quartz, feld-spar, limestone debris, loose.
2. - 28.00m: arenaceous rock with gravel: loose.
3. .- 48.00m: pelitic limestone with sand: grey, ingredient of sand: quartz, feldspar.
4. - 68.00m: mudstone: red-brown and mixed colors, with fine and smooth strain-slip section.
5. - 86.70m: pelitic limestone with sand: with sand, gravel, good roundness.
.6. - 109.00m: limestone of chert nodules: rich in chert nodules on the top, hard, 5-10 cm in diameter.
6. - 112.00m: shale: yellow, developed foliation.
7. - 123.00m: sandstone: grey,ingredient of sand: quartz feldspar, with small content of gravel.
8. - $185.71 \mathrm{~m}:$ sandstone: grey, medium sized sand mainly, fine gravel occasionally.

2-Pumping test data:

1. well depth: 185.61 m
[. depth of screen:
114.25-180.94m
2. pumping equipment:
air comoressor
| . static water Jevel: 90.29 m
F. drawdown: 0.85 m
3. well yield:
4. stability time:
$242 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
9 hours and 25 minutes

3, Data of simple water quality analysis:

1. Rhysical property: colorless, odourless, smelless. clear.
2. Chemical composition:

$\mathrm{K}^{\text {- }}+\mathrm{Na}$	$123.97 \mathrm{mg} / \mathrm{l}$
Ca.	$163.13 \mathrm{mg} / 1$
Mg ${ }^{\circ}$	$63.96 \mathrm{mg} / \mathrm{l}$
C1'	$386.95 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$136.89 \mathrm{mg} / \mathrm{l}$
$\mathrm{HCO}_{3}{ }^{\prime}$	$258.73 \mathrm{mg} / \mathrm{l}$
CO_{3}	$24.00 \mathrm{mg} / 1$
Total dissolved solids:	$1.03 \mathrm{~g} / \mathrm{I}$

- 3, Total dissolved solids:
$1.03 \mathrm{~g} / \mathrm{I}$

4. Total hardness:
37.6 (German hardness)

- 5. Permanent hardness:
25.7 (German hardness)

6. Temporary hardness:
11.9 (German hardness)
7. PH value 8.1

4, Well facilities:

1. type of casing: seamless pipe,thread connection.
standard: 168 mm (outside diameter), 152 mm (inside diameter).
2. pump brand: Caprari E6R $30 / 36+$ C615 (Italy) standard: l/l 100/230 M 355/170
3. generator brand: DEU'Z F3l 912 (Germany) standard: $\quad 34 \mathrm{HP} 25 \mathrm{KW}$ A 6270 1500 $\mathrm{J} / \mathrm{min}$
4. discharge pipe: $\quad 2^{\prime \prime}$ iron pipe depth of pump: 13 m
5. Water tank structure: reinforced concrete volume: $5.5 \mathrm{~m}^{3}$
6. water pond structure: reinforced concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
7. pumping house structure: galvanized iron sheet and
timber frame area; $9 \mathrm{~m}^{2}$

11 No. :
$T u-5$
Well location: at 6 km , north river bank, west of Burao. (-nstruction date: March 5th, 1984 to March 25th, 1984 12 Lithological profile:

1. 0 - 30.80n: arenaceous clay: brown-red, principal ingredient: clay/ silt, with small content of sand, viscosity.

- 46.30m: conglomerate: grey with rusty-yellow, gravel of good roundness, argillo-calcareous cementation.
- 50.12m: mudstone: purple, principal ingredient: clay/ silt, with chalybeate on the fracture section.
- 59.12m: argillaceous sandstone: brown-yellow, with grey, ingredient: feldspar, quartz, argillocalcareous cementation.

5. - $65.74 \mathrm{~m}:$ mudstone: purple with white rtrines, ingredient: clay/silt, smooth feeling on the compressive sfction.
6. $0-78.34 \mathrm{~m}:$ mudstone with gravel: purple with grey, most gravel are calcareous nodules, others pellite.
7. - 103.23m: argillaceous limestone with gravel: grey with rusty yellow, most gravel with angles, argillo-calcareous cementation.
8. - 114.07m: arenaceous mudstone: rusty-red with grey, principal ingredient: pellite, with coarse sand grains.
9. - 125.34m: rock clay: brown-red, smooth, principal ingredient: clay/silt, plastic.
10. - 142.50m: argillaceous limestone: grey, ingredient: argillo- calcareous, with small content of chert, with small cavities.
11. - 157.11m: arenaceous mudstone: brown-red, grey, principal ingredient: pellite, with small content of sand grains.
12. - 171.32m: sandstone: grey, medium-fine grains, principal ingredient: quartz.loose.
13. - $189.73 \mathrm{~m}:$ mudstone:grey, principal ingredient: pellite with intense plasticity and smooth feeling.
14. -* 193.73m: sandstone: principal ingredient: quartz, feldspar, loose.
-15. $-198.23 \mathrm{~m}:$ arenaceous mudstone:with small content of sand.
15. - 214.79m: sandstone: grey with rusty yejlow, more coarse sand grains, loose.
16. - 218.50m: greywacke: grey with rusty yellow, ingredient: quartz, feldspar, calcareous cementation and with solution cavities, harder lithological characters.

2, Pumping test data:

1. well depth:
2. depth of screen: !
3. pumping equipment:
4. static water level: "
5. drawdown :
6. well yield:
7. stability time:
218.40 m

157-215.40m
air compressor
112.20 m
7.44 m
$158 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
8 hours and 30 minutes
|3, Data of simple water quality analysis:

1. Physical property: colorless, odourless, smelless, clear,: Litho
2. Chemical comrostion

$\mathrm{K} \cdot \mathrm{Na}{ }^{\bullet}$	$269.10 \mathrm{mg} / 1$
$\mathrm{Ca} \cdot$	$189.18 \mathrm{mg} / 1$
$\mathrm{Mg} \cdot$	$34.33 \mathrm{mg} / 1$
Cl^{\prime}	$568.00 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$118.15 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$295.34 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$19.20 \mathrm{mg} / 1$

3. Total dissolved solids:
$1.35 \mathrm{~g} / \mathrm{I}$
4. Total hardness:
34.32 (German hardness)
5. Permanent hardness:
20.75 (German hardness)
6. Temporary hardness:
13.57 (German hardness)

* 7. PH value 8.1

4, Well fecilities:

1. type of casing: seamless pipe, thread connection.

- standard: 168 mm (outside diameter), 152 mm (inside dianeter)

2. pump brand: KSB CORA $10-199 / 23$

- standard: $\quad\left\{Q 6-14 \mathrm{~m}^{3} / \mathrm{h}, 11210-150 \mathrm{~m}\right\}$

3. generator brand: ATALANMA VOLCAN ML 250 (England)
standard: PHASE 3, HZ 50, RPM 1500,kVA 25,
aMPS 38, VOLTS 380/220
4. discharge pipe: $2^{\prime \prime}$ imon-pipe

- depth of pump: 210 m

5. water tank structure: reinforced concrete
volumai $\quad 5.5 \mathrm{~m}^{3}$
6. watar pond structure: reinforaed concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
-7. pumping house structure: galvanized iron sheet and
timber frame

-

area: $\quad 9 \mathrm{~m}^{2}$

Well location: at 4.5 km , north of Cahlkabood, Odweina, Tug Der Region

Construction: June 1st, 1983 to July 1st, 1983
1
Lithological profile:
$1,0-37.00 \mathrm{~m}:$ arenaceous clay: intercalated with layer of
conglomerate with sand, brown-red.
|2. - 50.00m: Iimestone: yellow-grey, pure on the top, with pellite on the bottom, with chert nodules.
3. - 62.00m: pellitic limestone: brown-yellow, with more pellite.
4. - 71.50m: calcarecus sandstone: brown-yellow, calcareous cementation, solution cavitites can be seen.
5. - 85.00m: shale: grey-yellow intercalated with less purple-grey, clear bedding, with ferromanganese nodules on the bedding surface.
I6. - 118.00 m : fine sandstone: light yellow, principal ingredient: quartz, small gravel occasionally.
7. - 122.00m: fine sandstone: light yellow, with higher content of clay/silt.

- 127.00m: medium-fine sandstone: light yellow.
- 131.00m: rock clay: yellow.
P. - 135.00m: fine sand: yellow.
- 139.50 m : rock clay.
- $\because C .0 \cup m: ~ m e d i u m ~ r i n e ~ s a n d s t o n e: ~ w h i l e-l i g h t ~ y e l l o w . ~$
with more coarse sand grains and gravel insjde.

13. - 152.06m: rock clay.
14. - 164.00m: medium sandstone: yellow, ingredient: quartz.
15. - 169.02m: fine sandstone:yellow.
16. - 177.50m: coarse sandstone and coarse sandstone with gravel: white, light yellow.

2, Pumping lest data:

1. well depth: 164.00m
2. depth of screen: 85-160m
3. pumping equipment: air compressor
4. static wäter level: 108.03 m
5. drawdown:
23.30 m
6. well yield:
$39.40 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7. stability time:

15 hours and 10 minutes.
3, Data of simple water quality analysis:

1. Physical property: colorless, odourless, smelless, clear.
2. Chemical composition:

$\mathrm{K}^{\bullet}+\mathrm{Na}$	$184.00 \mathrm{mg} / \mathrm{l}$
Ca. ${ }^{\text {- }}$	$30.06 \mathrm{mg} / \mathrm{l}$
Mg *	$14.59 \mathrm{mg} / \mathrm{L}$
C1'	$39.05 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$220.94 \mathrm{mg} / \mathrm{l}$
$\mathrm{HCO}_{3}{ }^{\prime}$	$305.10 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	-

3. Total dissolved solids: $0.04 \mathrm{~g} / \mathrm{i}$
4. Total hardness:
10.37 (Germar hardiness)
5. Permanent hardness: $\quad 10.37$ (German hardness)
6. Temporary hardness: 10.37 (German hardness)
7. PH value:
7.0
, Well facilities:
8. type of casing: seamless pipe, thread connection. standard: 168 mm (outside diameter), 152 mm (inside diameter)
9. pump bxand: KSB CORA 10-199/23
standard: \quad Q 6-14 m$/ \mathrm{h}, \mathrm{H} 210-150 \mathrm{~m}$.
10. generator brand: ATALANTA VOLCAN ML 250 (England) standard: PHASE 3, HZ 50, RPM 1500, KVA 25, AMPS 38, VOLIS 380/220
11. discharge pipe: $2^{\prime \prime}$ iron pipe
depth of pump: 160 m
12. water tank structure: reinforced concrete

$$
\text { volurne: } \quad 5.5 \mathrm{~m}^{3}
$$

6. water pond structure: reinforced concrete

$$
\text { volume: } 5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}
$$

7. pumping house structure: galvanized iron sheet and timber frame
area: $\quad 9 \mathrm{~m}^{2}$

- - 46-
 Well No.: Tu - 7

Well location: at 11 km , south-west of Burao.
Construction date: May 14th, 1984 to May 26th, 1984.
Lithological profile:

1. 0-17.43m: arenaceous clay: brown-yellow, principal ingredient: clay/silt, with sand grains.
2. - 97.00m: calcareous mudstone: brown-yellow, grey, etc. intercalated with gravel, calcium partially.
3. - 101.O0m: sandstone: grey, purple- brown, medium-fine sand maily, loose.
4. - 104.OOm: shale; grey, light yellow, politic texture, not very obvious bedding.
5. - 107.05m: greywacke: grey, purple-brown, medium-fine grains, calcium-shalybeate cementation, hard.
6. - 113.31m: fine siltstone: grey, principal ingredient: fine sand grains, loose.
7. - 124.83m: greywacke: white with light yellow, calcareoussilicon cementation, hard.
8. - 133.31m: medium-coarse sandstone: white-light yellow, principal ingredient: coarse grains of quartz, loose.
9. - 137.00m: mudstone: grey, principal ingredient: pelite.
10. - $168.75 \mathrm{~m}:$ medium-coarse sandstone: grey, with gravel, principal ingredient of sand is quartz. loose.

- 170.00m: greywacke.
- 176.00m: medium-coarse sandstone: looser, coarse grains, principal ingredient: quartz.

13. - 185.00m: greywacke: principal ingredient: quartz, calcareous cementation, hard.

2, Pumping test data:

1. well depth:
184.66 m
2. depth of screen:
112.00-180.66m
3. pumping equipment:
air compressor
4. static water level:
108.74 m
5. drawdown:
3.95 m
6. well yield:
$220 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7. stability time:

8 hours
3, Data of simple water quality analysis:

1. Physical property: colorless, odourless, smelless, clear.
2. Chemical composition:

$$
\begin{array}{cl}
\mathrm{K}^{\bullet}+\mathrm{Na} \cdot & 266.80 \mathrm{mg} / \mathrm{l} \\
\mathrm{Ca} \cdot \cdot & 49.30 \mathrm{mg} / 1 \\
\mathrm{Mg} \cdot & 38.67 \mathrm{mg} / 1 \\
\mathrm{Cl}^{\prime} & 174.66 \mathrm{mg} / 1 \\
\mathrm{SO}_{4}{ }^{\prime \prime} & 405.50 \mathrm{mg} / 1 \\
\mathrm{HCO}_{3}, & 203.81 \mathrm{mg} / 1 \\
\mathrm{CO}_{3}{ }^{\prime \prime} & 18.00 \mathrm{mg} / 1
\end{array}
$$

3. Total dissolved solids:
4.Total hardness:
15.8 (German hardness)
4. Permanent hardness:
6.4 (German hardness)
5. Temporary hardness:
9.4 (German hardness)
6. PH value:
8.1
7. Well facilities:
8. type of casing; seamless ripe, thread connection.
standard: 168 mm (outside diameter), 152 mm (inside diameter).
9. pump brand: KSB CORA 10-199/23
standard \quad Q $6-14 \mathrm{~m}^{3} / \mathrm{h}, \quad \mathrm{H} 210-150 \mathrm{~m}$
10. generator brand: ATALANTA : VOLCAN ML 250 (England) standard: PHASE 3, HZ 50, RPM 1500, KVA 25, AMPS 38 VOLIS 380/220
11. discharge pipe: $2^{\prime \prime}$ iron pipe
depth of pump: 180m
12. water tank structure: reinforced concrete
volume: $5.5 \mathrm{~m}^{3}$
13. water pond structure: reinforced concrete
volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
14. pumping house structure: galvanized iron sheet and timber frame.
area: $9 \mathrm{~m}^{2}$

Tu - 8
"Nell location: at 9 km , north river bank, southeast of Burao. Construction date: November fth, 1983 to November 29th, 1983. T, Lithological profile:

1. 0 - 7.70m: gravel with sand: light yellow -brown, loose, principal ingredient: medium-coarse sand, with gravel.
2. - 17.80m: arenaceous clay: brown-yellow, slightly consolidated, with calcareous nodules.
3. - $21.20 \mathrm{~m}:$ gravel layer: loose, gravel of good roundness.
4. - 45.20m: sandstone with gravel: rusty yellow,
ingredient of sand: quartz, feldspar, with calcareous and gravel cementation.
5. - 66.00m: limestone: grey, with pellite, small cavities can be seen on the bedding surface.
6. - 79.00m: argillaceous limestone: grey, with much pellite, with chert nodules on the bottom.
7. - 95.50m: limestone of chert nodules: grey, close, hard, with small solution cavities.
8. - 107.00m: argillaceous limestone: grey, with high content of mud, soft.
9. - 143.60m: limestone of chert nodules: grey, yellowbrown, hard, with big chert nodules.
10. - 150.60m: argıllaceous limestone: grey, grey-green, ingredient: argillo-calcareous, smooth feeling on the cross section.
11. - 165.00m: dissolutive limestone: grey, pure, with small content of chert, developed solution cavities.
12. - 173.00m: shale: light yellow, developed bedding, with ferromanganese nodules.
13. - 213.96m: medium sandstone: grey, with yellow-brown, ingrdient: medium-coarse grains, quartz, feldspar, calcareous-cementation.
, Pumping test data:
14. well depth 213.73 m
15. depth of screen: 16u-clu :
16. pumping equipment: air comfres:
17. static water level: 73. 3 :
18. drawdown: $\quad 6.02 \mathrm{~m}$
19. well yield:
$256.56 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
' . stahilizy time:
8 hours and 55 minutes
3, Data of sbimple water quality analysis:
20. Physical property: colorless, odourless, smelless, clear.
21. Chemical composition:
$\mathrm{K}^{\cdot}+\mathrm{Na}$. $\mathrm{Ca}{ }^{\circ} \quad 33.88 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\circ}$
C1'
$\mathrm{SO}_{4}{ }^{\prime \prime}$
HCO_{3},
$\mathrm{CO}_{3}{ }^{\prime \prime}$
22. Total dissolved solids:
23. Total hardness:
24. Permanent hardness:
25. Temporary h=rdness:
26. PH value

Well facilities:
1, type of casing: seamless pipe, thread connection. standard: 168 mm (outside diameter), 152 mm (inside diameter)
?2. pump brand: Caprari E6R $30 / 36$ + C615 (Italy)
standard: I/Ls 100/230 m355/170
4. generator brand: DEUTZ F 31912 (Germany)
standard: $34 \mathrm{HP} \quad 25 \mathrm{KW}$ A $6270 \quad 1500 \mathrm{l} / \mathrm{min}$

- discharge pipe: ?" iron pjpe
depth of piump: 144 m

5. water tank structure: reinforced concrete volume: $\quad 5.5 \mathrm{~m}^{3}$
6. water pond structure: reinforced concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
7. pumping house structure: galvanized iron and timber frame.

Well No.: Tu-9
Well location: at 3 km , east of Burao Airport.
:Construction date: March 8th, 1981 to March 26th, 1984
1, Lithological profile:
1.0 - 12.00m: clayey sand: yellow-brown, with slight plasticity, wilh high content of sand, quartz mostly.
2. - 45.63 m : conglomerate with sand: red-brown, ingredient: argillo-calcareous, with less content of limestone gravel.
3. - 54.43m: arenaceous mudstone: red-brown, with blackgreen, smooth feeling on the cross section, plastic.
4. - 78.00m: chert Iimestone: milk-white, with banded or nodular chert, pure limestone.
5. - 82.00m: grave pelitic limestone: grey, most gravè are pelitic-calcareous, with nigher content of pellite.
6. -110.00 m : interbedded with arenaceous mudstone and conglomerate with sand: grey, grey-green, argillo-calcareous cementation.
7. - 120.00m: limestone: grey, with chert, dissolution can be seen. with calcite vein.
8. - 123.00m: sandstone with gravel: cream yellow, principal ingredient: quartz, poor consollidation.
9. - 134.00m: shale: cream yellow, developed foliation. 10. $-180.65 \mathrm{~m}:$ sandstone: grey, light yellow, principal ingredient of scind: quartz, less feldspar and small black minerals, grains become coarse on the bottom, loose.
Ic,iPumping test data:

1. well depth: $\quad 180.12 \mathrm{~m}$
2. depth of sereen: 134-176.12 m
3. pumping equipment: air compressor
4. static water level: $\quad 85.45 \mathrm{~m}$
-5. drawdown: $3.23 m$
5. well yield: $\quad 485.50 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
6. stability time: 11 hours and 5 minutes

Data of simple water quality analysis:
-1. Physical property: colorless, odourless, smelless, clear.
b. Chemical composition:

$\mathrm{K}^{\circ}+\mathrm{Na}$	$262.43 \mathrm{mg} / \mathrm{I}$
Ca. ${ }^{\text {a }}$	$106.21 \mathrm{mg} / 1$
Mg ${ }^{-}$	$30.64 \mathrm{mg} / \mathrm{L}$
C1.	$34.4 .35 \mathrm{mg} / \mathrm{s}$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$116.71 \mathrm{mg} / \mathrm{7}$

$\mathrm{HCO}_{3}{ }^{\prime}$	$384.40 \mathrm{mg} / \mathrm{l}$
$\mathrm{CO}_{3}{ }^{\prime}$	$24.00 \mathrm{mg} / \mathrm{l}$

3. Total dissolved solids:
4. Total hardness:
21.93 (German hardness)
5. Permanent hardness: 4.2 (German hardness)
6. Temporary hardness: 17.73 (German hardness)
7. PH value:
8.1

, Well facilities:

1. type of casing: seamless pipe, thread connection. standard: 168 mm (outside diameter), 152 mm (inside diameter)
2. pump brend KSB CORA $10-199 / 23$
standard: Q $6-14 \mathrm{~m}^{3} / \mathrm{h}$, H $210-150 \mathrm{~m}$
3. generator brand: Atalanta volcan ML 250 (England)
standard: PHASE 3, HZ 50, RPM 1500, AMPS 38, VOLTS 380/220
4. discharge pipe: $2^{\prime \prime}$ iron pipe
depth of pump: 170 m
5. Water tank structure: reinforced concrete

$$
\text { volume: } \quad 5.5 \mathrm{~m}^{3}
$$

6. water pond structure: reinforced concrete
volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
7. pumping house structure: galvanized iron sheet and timber frame
area: $9 \mathrm{~m}^{2}$

Well No. : Tu -10

Well location: at 3 km , north west of Berkadgosha, Tug Der Region.

Construction date: March 17th, 1983 to April 24th, 1983 1, Lithological profile:

1. $0-93.50 \mathrm{~m}:$ interbedded with mudstone and gypsum rock: grey with dark red stains, dissolution on the gypsum.
2. - 111.50 m : thin layer of fine sandstone intercalated with mudstone: grey, light yellow-brown, medium-fine grains, loose.
3. - 135.00m: interbedded with thick layer of sandstone and mudstone: grey-green, fine grains, loose.
4. - 148.00m: fine sandstone: grey-green, fine grains, calcareous cementation, with small content of quartz, gravel, loose.
5. - 154.58m: gypsum rock: grey-green, close, hard.
6. - 162.00m: mudstone: grey-green, yellow-brown, close, hard, plastic when wet.
7. -165.00 m : sandstone: grey-green, with small content of quartz, gravel, argillo-calcareous cementation.
8. - $173.56 \mathrm{~m}: ~ m u d s t o n e ; ~ b r o w n-r e d, ~ i n g r e d i e n t: ~ p e l l i t e, ~$ plastic, smooth feeling on the cross section.

2, Pumping test data:

- 1. well depth:
-2. depth of screen:
173.36 m
- 3. pumping equipment: air compressor 93.50-165.00m

4. static water level:
90.21 m
5. drawdown:
10.23 m
6. well yield:
7. stability time:
$98.67 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
25 hours and 10 ininutes

1, Data of simple water quality analysis:

1. Physical property: colorless, smelless, clear, slightly salty and bitter.
2. Chemical composition:

$\mathrm{K}^{\prime}+\mathrm{Na} \cdot$	$1152.99 \mathrm{mg} / 1$
$\mathrm{Ca} \cdot$	$833.66 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\prime}$	$34.05 \mathrm{mg} / 1$
Cl^{\prime}	$3170.15 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$88.55 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$207.47 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$0 \mathrm{mg} / 1$

3. Total dissolved solids:
$5.384 \mathrm{~g} / 1$

- Total hardness: 124.50 (German hardness)
"5. Permanent hardness:
114.96 (German hardness)
- Temporary hardness:
9.54 (German hardness)
-1. PH value: 8.0

4_ Well facilities:

1. type of casing: seamless pipe, thread connection. standard: 168 mm (outside diameter), 152 mm (inside diameter)
.. pump brand: KSB CORA $10-199 / 23$
standard: $\quad Q 6-14 \mathrm{~m}^{3} / \mathrm{h}, \mathrm{H} 210-16 \mathrm{~m}$
2. generator brand: ATALANTA VOLCAN ML 250 (England) stendard: PHASE 3, H2 50, RHM 1500, KVA 2\%, AMPS 38 ! 1 :'TS $38 \mathrm{C} / \%$;
3. discharge pipe: $2^{\prime \prime}$ iron pipe
depth of pump: 160 m
4. water tank structure: reinforced concrete volume: $5.5 \mathrm{~m}^{3}$
5. water pond structure: reinforced concrete

$$
\text { volume: } 5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}
$$

7. pumping house structure: galvanized iron sheet and timber frame
area: $\quad 9 \mathrm{~m}^{2}$
well No.: Tu -11
Well location: at 12 km , east of Waridad, Tug Der Region. Construction date: December 23rd, 1982 to January 29th, 1983
, Lithological profile:
8. $0-18.65 \mathrm{~m}:$ mudstone: dark red, principal ingredient: pelite, with nodule-grain gypsum.
9. - $37.95 \mathrm{~m}:$ argillaceous limestone: grey, principal ingredient: argillo-calcareous.
10. - 53.20m: mudstone: dark red, principal ingredient: pelite, harder after dry, with gypsum crystal.
11. - 121.00m: mudstone: grey, dark red, with small content of pelite, loose, softer.
12. - $146.00 \mathrm{~m}:$ fine sandstone: grey, gypsum send, nonhomoi geneous degree of grains.
13. - $151.50 \mathrm{~m}:$ mudstone: grey-green, plastic when wet, with small content of gravel.

- 57 -

7. - 161.00m: fine sandstone: grey, ingredient of sand: gypsum, quartz, small content of black minerals.
8. - $172.00 \mathrm{~m}:$ mudstone: grey-green, ingredient: pellite, plastic, with crystalline gypsum.
9. $-187.66 \mathrm{~m}:$ mudstone: grey-green, soft, plastic when wet. 2, Pumping test $d=$ ta:
10. well depth: 186.10 m
11. depth of screen: 120-178.00m
12. pumping equipment: air compressor
13. static water level: 93.66 m
14. drawdown:
8.71 m
15. well: yield: $\quad 141.52 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
16. stabllity time: 25 hours

Data of simple water quality analysis:

1. Physical property: colorless, smelless, clear, salty and puckery.
2. Chemical composition :

$\mathrm{K} \cdot \mathrm{Na} \cdot$	$648.60 \mathrm{mg} / 1$
$\mathrm{Ca} \cdot$	$795.59 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\prime}$	$411,01 \mathrm{mg} / 1$
Cl^{\prime}	$3386.70 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$110.47 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$183.60 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$30.00 \mathrm{mg} / 1$

3. Total dissolved solids: $5.474 \mathrm{~g} / 1$
4. Total hardness: 206.09 (Germin hardness)
5. Pormanent hardness: 197. (E (German har bess)
6. Temporary hardness: 8.41 (Gexmin hardness)

- PH value: 8.4

Well facilities:

1. type of casing: seamless pipe, thread connection. stendard: 168 mm (outside diameter), 152 mm (inside diameter)
' '̌. pump brand: KSB CORA 10 - 199/23
standard: Q 6-14 m$/ \mathrm{h}, \mathrm{H} 210-150 \mathrm{~m}$
2. generator brand: ATALANIA VOLCAN ML 250 (England) standard: PHASE 3, HZ 50, RFM 1500, KVA 25, AMPS 38 VOLTS 380/220
3. discharge pipe: 2 " iron pipe
depth of pump: 170 m
.5. water tank structure: reinforced concrete volume: $5.5 \mathrm{~m}^{3}$
4. water pond structure: reinforced concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

F pumping house structure: galvandzed iron sheet and timber frame
area: $9 \mathrm{~m}^{2}$
Well No. : Tu-12 SoolWell localion: att 12 km , north west of Waridad, Tug Der Region.Construction drte: September 19th, 1982 to December 6th, 19821, Lithological profile:1. 0-18.29m: arenaceous clisy: yellow-brown, loose withgypsum and limestone gravel.
2. - 60.16m: mudstone: dark red, round-block distribution of gypsum, and with limestone gravel.
3. - 74.50m: mudstone: grey and dark red stains, loose, rough.
4. - 102.63m: mudstone: white, grey-green, crystal distribution of gypsum.
5. - 108.93m: mudstone: dark red and grey stains, with high content of pellite, plastic.
6. - 122.73m: mudstone: grey, brown-red, round-block appearence of gypsum mostly.
7. - 146.27m: interbedded with fine sandstone and mudstone: grey, grey-green, homogeneous grains, calcareous cementation.
8. - 172.06m: mudstone: grey-green, close, smooth cross section.
9. - 193.19m: argillaceous sandstone: grey-green.
10. - 200.86m: interbedded with sandstone and mudstone: grey-green, with gypsum and calcareous.
1, Pumping test data:

1. well depth: 199.10m
2. depth of screen: 122.73-1(.5.) Mn

- 61 -

3. pumping equipment: air compressor
4. static water level: 98.33 m
5. drawdown:
8.70m
6. ${ }^{\text {well }}$ yield:
$111.97 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7. stability time:

18 hours
3, Data of simple water quality analysis:

1. Physical property: colorless, clear, smelless, salty

- and puckery.

2. Chemical composition:

$\mathrm{K}^{\circ}+\mathrm{Na}{ }^{\text {a }}$	$177.10 \mathrm{mg} / 1$
$\mathrm{Ca} \cdot{ }^{\text {a }}$	$444.89 \mathrm{mg} / \mathrm{l}$
Mg \cdot	$752.70 \mathrm{mg} / \mathrm{l}$
C1'	$2836.45 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$187.32 \mathrm{mg} / \mathrm{l}$
$\mathrm{HCO}_{3}{ }^{\prime}$	$240.00 \mathrm{mg} / \mathrm{l}$
$\mathrm{CO}_{3}{ }^{\prime}$	0

3. Total dissolved solids: $4.519 \mathrm{~g} / 1$
. 4. Total hardness: 235.82 (German hardness)
4. Permanent hardness: 213.38 (German hardness)
-6. Temporary hardness: 22.43 (German hardness)
7.PH value:
8.4
-, Well facilities:
5. type of casing: seamless pipe, thread connection. standard: 168 mm (outside diameter) 152 mm (inside diameter)
-2. pump brand: Caprari E6R 30/36 + C 615 (Italy) standard: L/L 100/23/ m 350/170
generator brand: DEUT? F3 J 912 (Germany)
M standard: 34 HP 25 KW A 6270 15001/min
? depth of pump: 150 m
6. Water tank structure: reinforced concrete volume: $5.5 \mathrm{~m}^{3}$
7. water pond structure: reinforced concrete volume : $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

* pumping house structure: galvanized iron sheet and timber frame
area: $\quad 9 \mathrm{~m}^{2}$


```
                                    -64 -
                                    1858.76mg/l
                                    263.61mg/l
                                    9.6mg/1
    3, 'Lotal dissolved solids: }\quad3.8\textrm{g}/
    4, Total hardness: 104.8(German hardness)
    5p Permanent hardness: 128.8( '' !! )
    6, T'emporary hardness: 12.0( '' '')
    7, PH value:
    8 . 2
4, Well facilities :
    1, type of casing: steel pipe and rolled steel plate pipe,
                threed connection.
                            standard : 8''
    2, pump brand: Caprari E6R 30/36 + C615 (INALY)
                            standard : I/1' 100/230 M 355/170
    3, Generator brand: DEUTZ F3l 912 (GERMAN)
                            standard: 34HF 25KW A 6270 1500/min
    4, discharge pipe: 2" iron pipe
    \therefore, depth of pump: 60m
    5, water tank structure: reinforced concrete
    volume: }\quad5.5\mp@subsup{\textrm{m}}{}{3
    6, water pond sturcture: reinforced concrete
            volume: }\quad5.0\times0.4\times0.28\mp@subsup{M}{}{3
    7; pumping nourse sturcture: galvanizad iron sheet and
                                    timber frame
area: }9\mp@subsup{\textrm{m}}{}{3
```

Yell No. : Sa-2
fell location:at $2 \mathrm{~km}, 75$ degrees, northeast of huluf, sanag region fonstruction data: Juine 11th, 1985 to July 6th, 1985*

Lithological profile:
1.0 - 31.00m: pellitic gypsum: grey-yellow,medium-thick layer,intercalated with thin layer of gypsum rock and grey-yellow shale.
2, - 59.70m: gypsum rock: grey-yellow, medium-thick layer, serious dissolution,leakage at $33 \mathrm{~m}, 36 \mathrm{~m}$.
3, - 61.70m: shale: grey-green.
4, - 67.50m: gypsum rock: grey-yellow, loose.
5, - 73.50m: shale: grey-green.
6, - 95.00m: gypsum rock: yellow-white, think layers, close
7, - 100.28m: shale:grey-yellow.
, Pumping test data:
1, well depth: 99.47m
2, depth of screen: $16-95.00 \mathrm{~m}$
3, pumping equipment: air compressor
4, static water level: 13.8 m
5, drawdown:
6, well yield:
2.9 m

7, stability time: $\quad 6$ hours and 30 minutes
3, data of simple water quality analysis:
1, Physical property: colorless, smelless, clear, puckry
2, Chemical composition:

$\mathrm{K} \cdot \mathrm{Na}$	$127.88 \mathrm{mg} / \mathrm{l}$
$\mathrm{Ca} \cdot$	$675.35 \mathrm{mg} / \mathrm{I}$
$\mathrm{Mg}{ }^{\circ}$	$209.40 \mathrm{mg} / \mathrm{l}$
Cl^{\prime}	$1001.10 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$1206.50 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$192.82 \mathrm{mg} / 1$

73, Total dissolved solids: $3.4 \mathrm{~g} / 1$

Well facilities:
f, type of casing: eeamper nit, i.hrerd comection

```
standerd: 168 mm ( outside), 152 mm (incite)
2, pump brand: KCB COiRA 10-199/23
    standard: \(\quad Q \quad 6-14 \mathrm{~m}^{3} / \mathrm{h}\), H \(210-150 \mathrm{~m}\)
z, generator brand: ATALANTA VOLCAN ML 250 (English)
    standard: PHASE \(3, H Z 50\), RPM 1500, KVA 25, AMPS 38 ,
        VOLIS 380/220
4, discharge pipe: \(2 "\) iron pipe
    depth of pump: \(80 m\)
5, water tenk structure: reinforced concrete
    volume: \(5.5 \mathrm{~m}^{3}\)
6 , water pond structure: reinforced concrete
    volume: \(\quad 5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}\)
7, pumping house structure: galvanized iron sheet and
                                    timber frame
area: \(\quad 9 \mathrm{~m}^{2}\)
```

```
Well No. : Sa-3
Well location: Elbuh, sanag Region
Construction date :July 5th, 1985 to July 24th, }198
1, Lithological profile:
    1,0 - 5.00m: are naceous clay: yellow-brown,loose,
                    with limestone broken stone.
    2, - 27.00m: mudstone: mixed with red and white,
                                    with cortent. of pellite,harder,inter-
                                    calated with thin layer of conglomerate
                                    with sand.
3, - 46.00m: Immestone: grey,loosertexture,developed
        into small hollow dissolution holes,
        2-5 cm in diametex.
    4, - 53.00m: mudstone: yellow, fine andsmooch,close,
        harder.
    5, - 60.78m: argillaceous limestone:grey, smooth on
        bedding surface, with chert nodules.
    6, - 68.16m: limestone: white,loose,small hollow dis-
        solution holes can besfln 1cm in diameter
    7 - 85.nom: arॄillzceous limestone: grey-yellow,grey,
```

with content ofpellite, and with small chert nodules, dissolution holes can be seen 2 cm in diameter.

8, - 90.42n: limestone white, close,hard and brittle,
9, - 98.00m: muddy limestone: white, close.
10, - 152.0Cm: mudstone:grey,fine and smooth,with high content of clam fossils.

11, - 156.50m: limestone:grey,hard: `brittle,
12, - 169.00m: interbedded with mudstone andimestone black-grey,developed bedding,clam fossils
13. - $176.00 \mathrm{~m}:$ mudstone black-grey, with clam fossils

14, - 185.50m: dolomitic limestone:witite,hard and brittle
15, - 213.00m: mudstone: black-grey,fine and brittle developed bedding,with clam fossils
', Pumping test data:
1, well depth: 211.15m
2, depth of screen:
131.77-211.15m

3, pumping equipment: air compressor
4, static water level: 137.45 m
5, drawdown:
42.55 m

6; well yield:
$39.42 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7, stability time:
9hours
data of simple water quality analysis:
1, Physical property: colorless, odourless, smelless,clear
4, Chemical composition:

- 68 -

$$
\begin{aligned}
\mathrm{SO}_{4}{ }^{\prime \prime} & 466.85 \mathrm{mg} / 1 \\
\mathrm{HCO}_{3}^{\prime} & 280.69 \mathrm{mg} / 1
\end{aligned}
$$

3, Total dissolved solius:
4. Total hardness:

- 5, Permanent hardness:

6, iemporery hierciners:
7, PH value:
$1.73 \mathrm{~g} / 1$
37.6(German hardness)
24.7 (")

下, " ")
8.1

4, Well facilities:
1, type of casing: 0-162.43m : $8^{\prime \prime}$ rolled steel platepipe, welded; $162.43 \mathrm{~m}-211.15 \mathrm{~m}: 168 \mathrm{~mm}$ steel pipe, thread connection.
standard: 0--161.43m: 8" 161.43m--211.15m: 169 mm (outside)

152 mm (inglde)
2, pump brand: KSB CORA 10-199/23 ctandard: \quad Q $6--14 m^{3} / \mathrm{h}$, H $210--150 \mathrm{~m}$
3, generator brand: APALANTA VOLCAN ML 250 (Engladad) standard: PHASE 3,HZ 50,RPM 150C,KVA 25,AMPS38, VOITS 380/220

4, discharge pipe: $2^{\prime \prime}$ iron plpe depth of pump: 210 m

5, water tank structure: relnforced concrete volume: $5.5 \mathrm{~m}^{3}$

6, water pond structure: reinforced concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

7, numpirg house structure: galvanired fron sheel and timber frame
Srea : $9 \mathrm{~m}^{2}$

```
Well No. : Sr-- i
```

Well location : at 50m, southozat of daher village, Sanag Region

Construction date: April17th, 1585 to may 5th, 1985
1: Ifthological profile :

1. 0 - 15.57m: arenaceous clay:yellow-brown,with sand and gravel.
2. $-22.00 \mathrm{~m}:$ dolomitic limestome : grey, hardamd brititle

3, - $58.00 \mathrm{~m}:$ muddy limestone: grey, close and britte
4. - 70.00m: limestone: leakage at 66.56 m .
5. - 98.99 m : interbeded with mudstone and limestome

6, -'113.00m: limestone:grey,hard,Ieakage at 108.47 m
7, - 123.19m: mudstone:yellow with grey-green mudstone with clam rossile on thebot女om:

8 , - 141.47m: limestone:grey,hard,karst fracture development under 134 m .

9, - 164.60m: mudstone: dark grey,light grey, with clam and conch fosils. bedded.

2, pumping test data:

1, well deptin:
2, depth of screen :
3, pumping equipment:
4, sta甘ic water level:
5, drawdown :
6, well yield :
T, stability time:
164.35 m
102.24-164.35m
air compressor
102.24 m
umavailable
$200 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
Bhours

3, data of simple water quality analysis:
1, Physical property: colorless,odourless,smelles, clear
2, Chemical composition:

```
                                    - 70 -
        K* + Na`
                                126.04mg/l
                                66.33mg/1
                                106.28mg/1
                                    330.15mg/1
                                    124.88mg/I
        HCO}\mp@subsup{3}{}{\prime
            CO
                4..8mg/1
    3. Total dissolved solids: 1.1g/l
    4. Total hardmess: 33.7 (German`hardmess)
    5, Yermanent hardmess: 18.7 (")
    6, Temporary hardness: 15.0 ( " " 0
    F7, PH value:
    8
4. Well facilities:
    1, type of casing: seamless pipe, thread connection,
    #: standard : 168mm (outside), 152mm(inside)
    2, pump brand: KSB CORA 10-199/23
    standard: Q 6-14m}/\textrm{m},\mathrm{ , II 210-150m
    3, generator bramd: ATALANTA VOLCAN ML 250 (Emgland)
            standard: PHASE 3, HZ 50, RFM 1500, KVA 25,
                    AMPS 38, VOLLS 380/220
    , discharge pipe: 2" irom pipe
        depth of pump: 160m
    5, water tank structure: reinforced concrete
                        volume : 5.5m3
    6, waterpond stmucture : reinforced comerete
        wolume : 5.0 jx 0.4 x0.28 m
    I, pumping hours etructure:gelvanjzed ironsheet and
        timber frame
        i le1:
        ; m
```

Well Mo. : Sa- 5
Well location:Hingalol Village, Samag Region construction date : May 26th, 1985 toJure 9th, 1985

1. Lithological profile:

1,0 - 13.00m: arenaceous clay:with limestone depris
2, - 30.00m: muddy limestone: grey, with gypsum crystal
3, - 42.97m: mudstone: grey, with content of gypsum and calcareous.
3. - 49.25m: limestone with chert modwles: greyt,modules presamせ round and blocky,hard,with gypsam crystal in cracke.

5, - $56.00 \mathrm{~m}:$ madstome: grey, with contemt of calcareous and gypsum crystals.

6, - 68.00m: limestone: grey, with brown-red bands.
7. - 75,00m: mudstone: grey-greem.

8, - 83.00m: muddy limeskome: grey-green,small karst holes at 81.56 m

9, - 95.OOm: mudstone: grey-green, with curremt bedding on the bottom.

10, - 109.00m: dolomitic limestone: grey, with karst holes at 95m.

11, - 120.19 m : mudstone: grey-green.
, Pumping test data:
1, well depth: 113.35 m
2, depth of screen:
30-113.35m
3, pumping equipment:
air compressor
4, static water level:
59.93m

5, drawdown :
15.07 m

6, well yield:
$157.92 \mathrm{~m}^{3} / 24 \mathrm{hrs}$

7, stability time: $\quad 6$ hours and 50 minutes 3, data of simple water quility analysis :

1, Physical property: colorless, smelles, slightly di puckery, clear.

2, Chemical composition:

$\mathrm{K} \cdot \mathrm{Na} \cdots$	$53.82 \mathrm{mg} / 1$
$\mathrm{Ca} \cdots$	$755.51 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{*}$	$208.42 \mathrm{mg} / 1$
$\mathrm{Cl}{ }^{\prime}$	$1349.00 \mathrm{mg} / \mathrm{I}$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$799.22 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$154.99 \mathrm{mg} / 1$

3. Total dissolyed solids :
$3.3 g / 1$
4, Total hardness:
153 (German frardmess)
5, Permanent hardness:
146 (" ")
6, Temporary hardness:
7 ("
4. PH value :
8.2
$\left.\right|^{4, \text { Well, facilities : }}$ 1, type of casing
1, type of casing : seamless pipe, thread connection standard : 168 mm (outside $), 152 \mathrm{~mm}$ (inside)

2, pump brand: KSB CORA 10-199/23
standard: $\quad Q 6-14 \mathrm{~m}^{3} / \mathrm{h}$, H $210-150 \mathrm{~m}$
3, generator brand: ATALANPA VOLCAN ML250 (England) standard: PHASE 3, HZ 50, RPM 1500, KVA 25.

AMPS 38, VOITS 380/220
4, discharge pipe: 2 " iron pipe depth of pump: 110m
5. water tank structure: reinforced concrete volume : $5.5 \mathrm{~m}^{3}$

$$
-73
$$

6, water pond structure: reinfosced concrete

$$
\text { volume }: 5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}
$$

7, pumping hourc structiure: falvanized iron sheet
area : $9 \mathrm{~m}^{2}$

Well No : $\mathrm{Ba}-1$

Well location: Gardo, Bari REgion
Construction date : August 11 th, 1985 to August 22th, 1985 1, Lithological profile:

1, 0-7.00m: clay: yellow-brown,loose,intense plảsticity, with limestone broken stone
2. - 72.00m: mudstone:yellow-brown,loose and soft, plastic,slightly consolidated, with limestone broken stone

3, - 78.00m: limestone:brown, coarse , soft,with pellite
4. - 114.00m: mudstone:brown,loose and soft,plastic, with calcareous.

5, - 131.00m: argillaceous limestione:grey-yellow,loose and soft,with chert nodules and gypsum crystal

6, - 154.00m: mudstone:yollow-brown,loose, position of calcareous riching is grey.

7, - 174.00m: interbeded with mudstone andlimestone, yellow-green, grey, with chert nodule,riching inclam fossils, with dissolution

- 74 -

8, - 202.00m: mudstone:black-grey, saft and plastic, developed bedding.

3, - icy.2jn: argilliceous limestone: grey, soft,intiercalated with thin layer of modstone, with karst cracks.

2, Pumping test data:
1, well depth: 222.89 m
2, depth of screem: 122-222.89m
3 pumping equipment: air compressor
4, static water level: 139.04 m
5, drawdown: 9.46 m
6, well yield:
$47.04 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7, stability time:
6 hours
I_{3}, data of simple waterquality analysis:
| 1, physical property: colorless, odourless,smelless, clear 2, chemical composition:

4, Well facilities:
1, type of casing: seamless pipe, thread connection standard: 168 mm (outside), 152 mm (inside)

2, pump brand: KSB CORA 10 - 199/23

- standard: Q 6-14 $\mathrm{m}^{3} / \mathrm{h}$, II $210-150 \mathrm{~m}$

3, generator brand: ATALANTA VOLCAN ML 250 (England)
standard: PHASE 3, HZ 50, RPM 1500, KVA 25, AMPS 38, YOLIS 380/ 220

4, discharge pipe: $2^{\prime \prime}$ iron pipe depth of pump: 210m

5, water tank structure: reinforced concrete volume : $5.5 \mathrm{~m}^{3}$

6, water pond structure: reinforced concrete volume : $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

7, pumping house structure: galvanized iron sheet and timber frame
area :
$9 m^{2}$

Well No. : Ba-2
Well location: Guitd Ad, Bari Region
Construction date: August 28th, 1985 to September 14th, 1985 1, Lithological profile:

1. $0-50.00 \mathrm{~m}:$ mudstone:red-brown, loose and soft, with limestone broken stoneon the top

2, - 120.00 m : argillaceous limestone:red-brown, with non-miform content of pellite, with chert rodules.

3, - 131.00 m : mudstone:white, loose, and soft, plastic position of calcaraous riching presents state of argillaceous limestome.

4, - 166.65 m : argillaceous lime-stone: grey, loose ,soft
5, - 177.00m: dolomitic limestone:white,close and soft, plastic.

6, - 189.00m: argillaceous limestone: grey,loose and spft
7. - 201.00m: dolomitic limestone: white, close, hard and brittle,pure.

8, - 220.00m: mudstone: grey-green,loose andsoft,plastic
9, - 230.33m: gypsum rock: grey, with pellite,loose and softer..

2, Pumping test data:

- 1, well depth: 210 m

2, depth of screen: $95-210 \mathrm{~m}$

- 3, pumping equipment: air compressor

4, static water level: 128m
!, drawdown: 23m

- f., well yield:
", stanility time:
$59 \mathrm{~m}^{3} / 24 \mathrm{hc}$
8 houn.

3, data of simple water quality analysis:
1, Physical property: colorless, smelless, odourless,clear 2, Chemical composition:

$\mathrm{K} \cdot+\mathrm{Na} \cdots$	$44.83 \mathrm{mg} / 1$
$\mathrm{Ca} \cdots$	$317.77 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\prime}{ }^{\prime}$	$103.77 \mathrm{mg} / 1$
$\mathrm{Cl}{ }^{\prime}$	$475.02 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$446.68 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$223.33 \mathrm{mg} / 1$

- 3, Total dissolved solids
$1.61 \mathrm{~g} / 1$
4, Total hardness:
68.4 (German hardness)

5, Permanent hardness:
58.1 (' 1)

6, Temporary hardmess:
10.3 (11 1')

7, PH value
8

A, Well facilities:
1, type of casing: seamless pipe, thread cornection.
standard: 168 ,mm (outside), 152 mm (inside)
2, pump brand: KSB CORA 10 - 199/23
standard: Q 6-14 $\mathrm{m}^{3} / \mathrm{h}, \mathrm{H} 210-150 \mathrm{~m}$
3, generatior brand: ATALANLA VOLGAN ML 250 (Bngland)
standard: PHASE 3, HZ 50, RPM 1500, KVA 25. AMPS 38, VOLTS 380/220

4, discharge pipe: $2^{\prime \prime}$ irom pipe
5, water tank structure: reinforced concrete

$$
\text { volume: } \quad 5.5 \mathrm{~m}^{3}
$$

6 , water pond structure: reinforced concrete volume: $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

7, pumping house structrue: galvanized iron sheet and umber trame
areit : j m

```
- '. \& -
```

Well No. La - 3
Wel! lozition Alucony, Eiz: Region
Constru*"Acr diste: Octorver 1st, 1985 wo Octorber 15 th 1985 1, Jitholueicai profile:
$1.0-7.00 m:$ sandstoneand sedmantary sandstone
2, - 41.00m: argillaceous limestone: yellow-grey, soft, with chert pellite.

3, - 78.00m: limestone interbedded with argillaceomsit Iimestone; Iimestone:white-grey,hard and brittle, small karst with slight leakage

4, - $100.00 \mathrm{~m}:$ argillaceous limestome:yellow-grey, soft.
5, $-146.00 \mathrm{~m}:$ dolomitic limestione interbedded with argillaceous limestone; dolomitic limestone:hard, and brittle, small. karst appeared in the up part with slight leakage.
6. - 166.00m: dolomiticlimestone: while-grey, hard and brittle, with chert strips.
7. $-185.00 \mathrm{~m}:$ argillaceous limestone interbedded with dolomitic limestone.

8, -209.00m: dolomitic limestone:white-grey, hard and brittle, with chert strips in the up part
9, -220.44 m : madstone interbedded with argillaceous limestone.
2. Pumping test data:

1, well depth :
2, depth of screen:
3, pumping equipment:
4, static water Jevel:
217.78 m

107-217m
air compressor
139 m

5, drawdown : 14.4 m

6, well yield: $32.6 \mathrm{~m}^{3} / 24 \mathrm{Frrs}$

7, stability time: Bhours

3, data of simple water quality analysis:

1. Physicalproperty:colorless,odourless, smelless, clear

2, Chemicalcomposition:

$\mathrm{K}^{\circ}+\mathrm{Na}{ }^{\prime}$	$208.15 \mathrm{mg} / 1$
$\mathrm{Ca} \cdots$	$207.41 \mathrm{mg} / 1$
$\mathrm{Mg} \cdots$	$78.68 \mathrm{mg} / 1$
$\mathrm{Cl}{ }^{\prime}$	$405.06 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$524.49 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$216.27 \mathrm{mg} / 1$

3, Total dissolved solids: $1.64 \mathrm{~g} / 1$
4, Total hardness: 47.2 (German hardness)
5, Permenant hardness: 37.2 (" ")
6, Temporary hardness: 10 (" ")
7, PH value :
8.1

4, Well facilities:
1, type of casing: seamless iron pipe, thread connection standard: 168 mm (outside), 152 mm (inside)

2, pump brand: KSB CORA 10-199/23 standard: Q 6-14m ${ }^{3} / \mathrm{h}$, H $210-150 \mathrm{~m}$
3, genera tor brand: ATALATA VOLCAN ML 250 (England) we fl standard: PHASE 3, HZ 50, RPM 1500, KVA 25, x
\Varangle, water tans stricture: reinforced concrete
which is from
somlsyll ai Project. Refer to Consultant volume : $5.5 \mathrm{~m}^{3}$

Maeris Report aus pl Counter part uport as regard to this well

- 80 -

6, water pond structure: reinforced concrete
volume : $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
7, pumping house structure: galvanized iron sheet
and timber frame.
area : $9 m^{2}$

- 81 -
- 123.56 m : arenaceous mudstone: grey, with brown-red, principal ingredient:pellite, with small content of small gravel.
- 183.07m: shale: light yellowgxey,grey-purple,black-grey, clear foliation, rich infossils.

```
    |mping test data:
    well depth: 127.50m
    depth of screen: 19-32m, 104-115m.
    pumping equipment: air compressor
|4, static water level: 14.00m
    drawdown: 43.10:m
16. well yield: }107\mp@subsup{\textrm{m}}{}{3}/24\textrm{hris
    satbility time: Ehours and }15\mathrm{ minutes
|ata'ofsimple water quality analysis:
, Physical property: colorless,bitter, puckry, clear
    Chemical composition:
        K* + Na* 6609.05mg/l
        Ca` 1518.00mg/1
        Mg.• 390.34mg/1
        Cl' 12502.40mg/l
        SO4"' 545.14mg/l
        HCO}\mp@subsup{3}{}{\prime}\quad152.55\textrm{mg}/
        CO}\mp@subsup{3}{}{\prime\prime}\quad30.00\textrm{mg}/
3, Total dissolved solids: 21.7g/l
    , Total hardness: 30?.1(Gemmen hirdness)
    , Permament himdness: 295.i( " ")
    6, Temporary hardness: 7.0( " " )
    , PH value:
```

, Well facilities:
1, type of casing: seamless pipe, thread connection standard: $\quad 8^{\prime \prime}$

2, pump brand : Caprari E6R 30/36 $\div 615$ (ITAJY) standard: $1 / I^{\prime}$ 100/230 M 355/170
3. generator brand: DEUTZ F 3: I 912 (Germany)
standard: $34 \mathrm{HP}, 25 \mathrm{KV}, \mathrm{A} 6270,1500 \mathrm{~L} / \mathrm{min}$
4,discharge pipe : $2^{\prime \prime}$ iron pipe depth of pump: 106 m

15, water tank structure: reinforced concrete volume : $\quad 5.5 \mathrm{~m}^{3}$

6, water pond structure: reinforced concrete volume : $5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

7 pumping house structure: galvanized iron sheet and timber frame area : $9 \mathrm{~m}^{2}$

Well No : So -. 2
Well location: at 500m, northwest of Daraweiny, Sool Region Construction : July 24 th, 1985 to August 24th, 1985

1, Lithological profile :
1,0-8.00m: arenaceous clay: 2 m gravel with sand onthe bottom.
2, - $16.60 \mathrm{~m}: ~ c l a y ~ i n t e r c a l a t e d ~ w i t h ~ g r a v e l: y e l l o w-b r o w n, g r a v e l ~$ diameter become small ontthebottom.

3, - 40.00m: marl: grey-yellow, developed solution cavities partially.

4, - 49.00m: shale:grey-green, developed foliation.
5, - 52 OOm: mudstone.
6, - 62.00m: shale:grey-green, doveloped foliation.
7, - 73.50m: mudstone:dark grey, soft lithological characters.
'rich in clam fossils.
8, - 116.00 m : shale:grey-green, rich in clam fossils and starspot yellow iron ore.

9, -135.00m: mudstone:grey-yellow, soft lithological characters.
10, -152.00m: marl: yellow-grey,intercalated with thin layer of shale, broken partially.

11, -155.50m: mudstone:
12, -164.00m: interbedded with marl and shale.
-13. -173,00m: mudstone.
14, -184.00m: limestone: grey, hard, with content of water.
15; - 189.00 m : marl intercalated with shale.
16. -196.00m: mudstone.
i7, -207.00m: limestone:grey, hard, with content of water.

- 8 , -220.44m: marl intercalated with shale.

1. Pumping test aliva:

1, well deptr: $\quad 218.6 \frac{2 \mathrm{~m}}{}$
2, depth of sicreen: 106-217'm
3, pumping equipmerit: air compressor.
4, static water level: 102.78 m
5, drawdown :
42.6 m

6, well yield:
$44.6 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7, stability time: 8hours
', data of simple water quality analysis:
1, Physicalproperty: colorless,odourless,smelless, clear.
2, Chemical composition:

$\mathrm{K}^{\circ}+\mathrm{Na} \cdot$	$99.36 \mathrm{mg} / 1$
$\mathrm{Ca} \cdot$	$309.8 ? \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\cdots}$	$98.25 \mathrm{mg} / 1$
Cl^{\prime}	$247.44 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$941.87 \mathrm{mg} / \mathrm{I}$
$\mathrm{HCO}_{3}{ }^{\prime}$	$78.11 \mathrm{mg} / 1$

3. Total discolved solids: $1.8 g / 1$
-4, Total hardness: 66 (German hardness)
5, Permanent hardness: 62.4(" ")
"6, Temporary hardne:s: $3.6(\mathrm{n}$ ")
7, PH value: $\quad 8.0$
Well facities:
m. type of casing: seamless pipe, thread connection.
standard: 168 mm (outside), 152 mm (inside)
-: pump brand : KSB CORA 10-199/23
standard: $Q 6-14 \mathrm{~m}^{3} / \mathrm{h}, \mathrm{H} 210-150 \mathrm{~m}$

3, generator br: nid: ATALANTA VOLCAN ML 250 (Engliand) standard: FHisif 3, HZ 50, RPM 1500, KVA 25 , MPS 38 , VOLIS $380 / 220$

4,discharge pipe : $2^{\prime \prime}$ iron pipe depth of pump: 215 m

5, water tank structure: reiforced concrete volune: $\quad 5.5 \mathrm{~m}^{3}$

6, water pond structure: reinforced concrete
volume: $\quad 5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$
7. pumping house structure: galvannized iron sheet
and timber frame
area: $9 m^{2}$

```
Well No : Nu - 1
Nell location: Gudubjiran, Nugal liegion
Construction date : September 19th, 1984 to November 18th, 1984
,
    , Lithological profiJe:
    , 1,0 - 3.00m: arenaceous clay: red-brown,sticky and plastic
    2, - 61.28m: dolomitic limestone:milk-white,with calcite
    veins,not very developed karst.
    3', - 63.00m: pellitic limestone with sand:grey.
    4;" - 91.00m: interbedded with limestone and mudstone:
        limestone is milk-white dolomitic limertone.
        mudstone j.s brown.
    -5, - 98.00m: biogenetic limestone; grey-yellow,w.th many kinds
        of molluses fossils,more developed karst.
```

- $3\{2$ -

6. - 146.64m: arenaceous mudstone with organisms: grey-black, with many kinds of molluses fossils.

2", Pumping test data:
1, well depth: 145.91 m
2, depth of screen:
78.16-145.91m

3, pumping equiprnent:
air compressor
14, static water level:
77.11 m

5, drawdown: 0.79 m

6, well yield: $181.44 \mathrm{~m}^{3} / 24 \mathrm{hrs}$

7, stability time : 8 hours

3, data of simple water quality analysis:
1, Physical property: colorless,odourless,clear,smelless.
2, Chemical composition:

$\mathrm{K}^{\prime}+\mathrm{Na} \cdots$	$462.99 \mathrm{mg} / 1$
$\mathrm{Ca} \cdots$	$115.40 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\prime}$	$62.50 \mathrm{mmg} / 1$
Cl^{\prime}	$828.57 \mathrm{mg} / 1$
$\mathrm{SO}_{4}{ }^{\prime \prime}$	$182.82 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$177.40 \mathrm{mg} / 1$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$40.80 \mathrm{mg} / 1$
dissolved solids:	$1.87 \mathrm{mg} / 1$

4, Total hardness:
30.5 (German hardness)
'5, Permanent hardness:
22.4 (")

6, Temporary hardness:
8.1 (" ")

7, PH value:
8.1
, Wellfacilities:
1, type of casing: seamless pipe, thread connection standard: 168 mm (outside), 152 mm (inside)

2, pump brand: Caprari E6R 30/36: 0615 (ITALY)

- 4, discharge pipe: «" iron mape
depth of pums): icJin
'5, watér tank structure: reinrorced concrete
volume: $\quad 5.5 \mathrm{~m}^{3}$
6, water pond structure: reinforced concrete
volume: $\quad 5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

7. pumping house structure: galvanized iron sheet and timber
frame
area : $\quad 9 \mathrm{~m}^{2}$
1

11, - 118.60m:argillaceous limestone.
12, - 120.20m: limestone.
13, - 121.40m: argillaceous linestone.
14. - 122.80m: limestone.

15, - 124.00m: argillaceous limestone.
16, - 147.00m: limestone.
2, Pumping test data:
1, well depth: 134.00 m
2, depth of screen: 71.5-134m
3, pumping equipment: air compressor
4, static water level: 87.26 m
5, drawdown : 9.22 m
6, well yield : $\quad 68.60 \mathrm{~m}^{3} / 24 \mathrm{hrs}$
7, stability time: 8 hours
3, data of simple water quality analysis:
1, Physical property: colorless,odourless,smelless, clera.
2, Chemical composition:

$\mathrm{K} \cdot+\mathrm{Na} \cdot$	$132.02 \mathrm{mg} / 1$
$\mathrm{Ca} \cdot$	$143.49 \mathrm{mg} / 1$
$\mathrm{Mg}{ }^{\cdot}$	$93.39 \mathrm{mg} / 1$
Cl	
$\mathrm{SO}_{4}{ }^{\prime}$	$464.24 \mathrm{mg} / 1$
$\mathrm{HCO}_{3}{ }^{\prime}$	$57.63 \mathrm{mg} / \mathrm{I}$
$\mathrm{CO}_{3}{ }^{\prime \prime}$	$335.61 \mathrm{mg} / 1$
	$24.00 \mathrm{mg} / 1$

3. Total dissolved solids: $1.25 \mathrm{~g} / 1$
4. Total harchess: 41.6 (German hardness)

5, Iermonent hardness: 26.2 ($11 \quad 11)$
6, Tenpurary hardness: 15.4 (11)

4, Well facilities:
1, type of casinf: seamlesrpipe, thread connection. standard: $1 \in 8$ mim (outside), 152 mm (inside)

2, pumd brand: KSB CORA 10-199/23 standard: \quad Q $6-14 / \mathrm{h}, \mathrm{H}$ 210-150m

3, generator brand: arALania VOLCAN MI 250 (England) standard: PHaSE 3, H2 50, RPM 1500, KVA 25 , - inps 38, VLLiE 380/220

4, discharge pipe: $2^{\prime \prime}$ iron pipe depth of pump: 130m

5, water tank structure: reinforced concrete volume: $\quad 5.5 \mathrm{~m}^{3}$

6, water pond structure: reinforced concrete volume: $\quad 5.0 \times 0.4 \times 0.28 \mathrm{~m}^{3}$

7, pump house structure: galvanized iron slieet, timber frame area :
$9 m^{2}$

Completion Report

on

The Water Well Drilling Project in

The Northern Four Regions
of
The Democratic Republic of Somalia

Chinese Well Drilling Team under

CHINA NAYIONAL COMPLETE PLANA EXYORL COKEORALION

