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a  b s t  r  a c t

Prosopis  spp.  is a fast and aggressive  invader  threatening  many arid and semi-arid areas  globally.  The

species  is  native to the  American  dry zones and was  introduced in Somaliland for  dune  stabilization

and  fuel  wood  production  in  the  1970’s and 1980’s.  Its  deep  rooting system is  capable  of  tapping  into  the

groundwater  table thereby reducing  its  reliance on infrequent rainfalls and near-surface  water. The com-

petitive  advantage  of  Prosopis is further  fuelled by  the  hybridization of  the  many  introduced subspecies

that  made  the plant capable  of adapting to  the  new environment and replacing  endemic species.  This

study  aimed to test the  mapping accuracy achievable  with  Landsat 8  data  acquired during the wet and

the  dry  seasons within a Random  Forest (RF)  classifier,  using both  pixel- and object-based  approaches.

Maps  are  produced  for  the  Hargeisa area (Somaliland), where reference  data was  collected  during the

dry  season of  2015. Results were  assessed through a 10-fold cross-validation procedure. In our  study,  the

highest  overall accuracy  (74%)  was achieved when applying  a pixel-based classification using a combi-

nation  of the  wet  and dry  season  Earth observation  data.  Object-based mapping were  less reliable  due to

the  limitations in  spatial resolution  of  the  Landsat  data  (15–30 m)  and problems in finding an appropriate

segmentation  scale.

© 2016  Elsevier B.V. All rights  reserved.

1. Introduction

Prosopis spp. are  an extremely drought-tolerant and widespread

tree species native to American dry zones (Pasiecznik et al., 2001).

In the 1970’s and 1980’s, a  selection of  different species of Prosopis

genus were introduced in Somaliland for fuel wood production,

dune stabilization after severe droughts (NAS, 1980; Von Maydell,

1986), and restoration of  ecosystems degraded by war-displaced

populations (Awale and  Sujule, 2006). The species, hybridized and

evolved in a hybrid species specifically adapted to the environmen-

tal conditions of East Africa, rendering it a  superior and  aggressive

competitor to endemic species (Hunziker et al., 1986;  Pasiecznik
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et al., 2001;  Tessema, 2012). For simplicity, we will address here-

after all subspecies and hybrids simply as  Prosopis.

The competitive advantage of Prosopis stems from several char-

acteristics:

• extensive and deep rooting system, capable of  growing tens of

meters until tapping into a deep groundwater, thus reducing the

dependency on rain water (Pasiecznik et al., 2001);
• vigorous production of pods high in  sugar content and palat-

able to a variety of wild and domesticated fauna in addition to

facilitated germination though animal digestion (Kipchirchi et al.,

2011; Koech et al., 2010; Solbrig and  Cantino, 1975);
• effective dispersal strategy characterized by combination of

water and animal dispersal (Berhanu and  Tesfaye, 2006; Mworia

et al., 2011; Solbrig and Cantino, 1975)  resulting in long distance

transportation and an initial establishment along riparian zones

http://dx.doi.org/10.1016/j.jag.2016.07.019

0303-2434/© 2016 Elsevier B.V. All  rights reserved.
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Table  1
Land cover classes observed during the field campaign and used for the classification of the study area of Hargeisa. Prosopis is present in different degrees in classes 1–5 and

absent  in the eleven remaining classes. The total number of manually delineated polygons (MDP) is 332, with 48,955 pixels at 15 m resolution.

Class Name  Description MDP  (n)  Pixels (n)

1 Prosopis >50% Prosopis cover over 50%, such as dense thickets 26 626

2  Prosopis <50% Prosopis cover under 50% or dry areas and soils 20  784

3  Mix  >50% Prosopis dominant, more than 50% cover, mixed with natural vegetation 21 603

4  Mix  25–50% Prosopis sub-dominant, less than 50% cover, mixed with natural vegetation 20  1100

5  Mix  <25% Prosopis present, less than 25%, mixed with natural vegetation 11 729

6  Nat  >50% Natural vegetation covering more than 50% 20 1132

7  Nat  25–50% Natural vegetation covering less than 50% 20  4681

8  Nat  <25% Natural vegetation covering less than 25% 22 11174

9  Agri irri Irrigated agriculture 28 627

10  Agri rain Rainfed agriculture 20  4488

11  Build up Build up and urban areas 24 4043

12  Wadi sand Dry river beds 20 4355

13  Rocky soil Darker soils with rocky outcrops 20 5180

14  Dark bare soil Dark and barren soils found at higher elevations 20  5805

15  Sandy soil  Darker sandy soils 20  2115

16  Red soil Reddish soil found near agricultural areas 20  1513

and in proximity of human settlements typically raising livestock

in the region.

For control and optimal management, Prosopis invasion must

be first identified and  regularly monitored (Shackleton et al., 2015).

This is why several studies have been carried out in  an effort to map

the Prosopis invasion in Africa using remote sensing data (Hoshino

et al., 2012, 2011; Mwangi and Swallow, 2005; Van Den Berg et al.,

2013; Wakie et al., 2016, 2014). Van Den Berg et  al. (2013) used

Landsat imagery and MODIS time series to describe the current

extent of Prosopis invasion in South Africa and its spatial dynam-

ics, and to identify areas most susceptible to future invasion. The

analysis of MODIS composites indicated that Prosopis reaches peak

development during February and May. Landsat images matching

this timeframe were selected and used for classification.

Wakie et al. (2014) used November and April MODIS Enhanced

and Normalized Difference Vegetation Indices (EVI and NDVI) for

Afar, Ethiopia. This matches a cold and dry period early in  the dry

seasons of Ethiopia. During this time, the foliage of most woody

shrubs and trees remains green, while herbaceous flora, such as

annual grasses and agricultural crops, senesce, creating spectral

contrasts for better discrimination of woody vegetation. However,

the coarse resolution data at 250 m can only depict relatively large

stands.

Our study builds on this experience and follows the preliminary

work of Rembold et al. (2015) in Somaliland. The authors concluded

that the spread of Prosopis is  acute and affects rivers, wadis (in

Somaliland referring to  ephemeral rivers, usually dry except dur-

ing the rainy season) and riparian environments, as  well as  urban

and peri-urban areas. The study utilized Landsat 8 data, reference

data based on geo-tagged photos from a  previous FAO field cam-

paign (Food and Agriculture Organization of the United Nations)

and applied a Maximum Likelihood Classification (MLC) using two

Prosopis classes. Their results showed that mapping Prosopis is dif-

ficult because the plant (i) occurs in relatively small or narrow

patches, (ii) is often mixed with natural vegetation or agriculture,

and (iii) is highly polymorphous in its growth forms.

Several other studies have comparatively assessed the perfor-

mances of pixel- and object-based classifications but focussed on

other species (Aguirre-Gutiérrez et al., 2012; Duro et al., 2012; Gao

and Mas, 2008; Immitzer et al., 2016 Wang et al., 2004;  Weih and

Riggan, 2010 Whiteside et al., 2011).  Outcomes and conclusions

vary depending on the target variable(s), study area and the spatial

resolution of the data. Here we extend such comparative studies

for the first time to Prosopis mapping using state-of-the-art remote

sensing methods. We  develop a classification procedure based on

the Random Forest (RF) classifier (Breiman, 2001)  to classify five

different Prosopis classes with Landsat 8  data from wet  and dry sea-

sons. Specifically, we  comparatively assess and discuss the accuracy

of:

- pixel- and object-based image classification, and

- image acquisition time (e.g. wet  vs. dry season)

with the objective to detect and map  Prosopis in Hargeisa, Soma-

liland and to determine the best classification approach for  the

target species, thereby supporting future studies covering larger

areas in East Africa. Details about the map  outputs from the best

performing models together with ecological interpretations of the

Prosopis invasion are published in  Meroni et al. (2016).

2. Material and methods

2.1. Study area

The study area (Fig. 1A) is located in western Somaliland

(between 9◦27′ and  9◦58′ N,  and 43◦33′ and 44◦24′ E), a  self-

declared state internationally recognized as an  autonomous region

of Somalia (Fig. 1B). The study area covers 5167 km2 and includes

the state capital Hargeisa, with 750,000 inhabitants (Demographia,

2015). A comprehensive description of the study area is provided

in Meroni et al. (2016).

2.2. Data collection

2.2.1. Field work and reference dataset

The study area of Hargeisa was  visited during the dry season in

February 2015 and  ground observations were collected for areas

with different degrees of Prosopis infestation. Due to security and

logistical issues, only selected areas could be visited in the field. An

additional number of  reference polygons were drawn by photoint-

erpretation of Very High Resolution (VHR) satellite data consisting

of WorldView-2 and QuickBird true colour composites made avail-

able to the Food and Agriculture Organization of the United Nations,

Somalia Water and Land Information Management (FAO-SWALIM)

project under the NextView license. For a large number of such

polygons, photointerpretation was  assisted by the use of geotagged

photographs taken in the field.

• The reference data used for classification distinguishes 16 land

cover classes (Table 1):
• pure Prosopis areas with different soil coverages (class 1–2),
• areas where Prosopis grows mixed with other species (class 3–5),
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Fig. 1. (A) The study area visualized with a Landsat 8 false colour composite. (B) Outline of the study area (red box) in Somaliland (black outline) and the capital Hargeisa

(dot).  (C) Reference datasets visualized on Shuttle Radar Topography Mission (SRTM) (USGS, 2004) dataset. (For interpretation of the references to colour in this figure legend,

the  reader is referred to the web  version of this article.)

• natural vegetation with different coverages (class 6–8),
• agricultural areas (class 9–10),
• build-up areas (class 11), and
• bare soils (class 12–16).

To keep the sample set relatively balanced (approx. 20–30 poly-

gons per class), no attempts were made to regroup the (detailed)

classes into fewer (broader) classes. Although increasing the overall

accuracy, such a  regrouping would make the samples unbalanced.

2.2.2. Satellite data and pre-processing

Two Landsat 8 Operational Land Imager (OLI) images were

acquired through the USGS Earth Explorer portal and used for the

mapping. One cloud free image was acquired in October (wet sea-

son) and a second image in February during the dry season (Table 2).

These images were stacked and radiometrically calibrated. The

datasets were compensated for different illumination conditions

Table 2
Overview of the two  Landsat 8 images used in this study. All spectral channels were

used,  except the TIR and the coastal aerosol band.

Name  Sensor Acquisition date Cloud coverage

Wet  season OLI  28.10.2014 0%

Dry  season OLI  17.02.2015 0%

(sun-terrain geometry) using a 30 m  resolution Digital Elevation

Model (ASTER GDEM) and  the C-correction method (Teillet et al.,

1982). All spectral bands and the NDVI of both Landsat 8 scenes

were stacked into a single raster containing fourteen bands: R, G,

B, NIR, SWIR1, SWIR2 and NDVI.

The original 30 m resolution was  too coarse for being suitable in

the object-based image analysis (OBIA). For this reason, the Landsat

8 data were pan-sharpened to 15 m  resolution (Javan et al., 2013;

Zhang, 2008) using the ENVI implementation of  the Gram-Schmidt
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Fig. 2. General workflow of the research. We distinguish 3 × 2 combinations of seasonality of the EO input data (§2.2.2) and reference datasets (§2.2.1) using pixel- and object-

based  Random Forest (RF) modelling (§2.2.2). Additional sub-experiments are performed to assess the impact of wavelets (§2.2.3) (only for OBIA) and Spatial Resolution (SR)

of  the EO data (only for PBA) (§2.2.2).

method (Laben and Brower, 2000). Hence, the object-based map-

ping used only the 15 m (pan-sharpened) data, whereas datasets at

15 and 30 m were evaluated for the pixel-based approach (PBA, see

sub-experiment I  in Fig. 2).

2.2.3. Features used for  classification

A number of studies have proven that textural features pro-

vide valuable information for OBIA applications (Du et al., 2010;

Koger et al., 2003; Sakamoto et al., 2005; Toscani et al., 2013). For

the purpose of our study, such features were generated based on

the Coiflet wavelet transformation (Daubechies, 1992). For every

spectral band we used four transformation levels and produced

the mean of horizontal (H), vertical (V) and diagonal (D)  detail-

coefficients, by applying the Wavelet Toolbox in  MATLAB 7.13.0

(MATLAB, 2012).  In addition, we also calculated summary statis-

tics per object (mean, standard deviation and  percentiles), also

referred to as spectral features, for  each of the six spectral bands

and the NDVI. Depending on which segmentation was used (see

§  2.2.1), the appropriate statistics were extracted. The impact of

using textural features was only assessed for the OBIA approach

(see sub-experiment II in Fig. 2). No textural features were used for

the pixel-based approach.

2.3.  Methodology

A comprehensive overview of the implemented analysis is  pro-

vided in  Fig. 2.  Three different Earth Observation (EO) data sets

(wet, dry and combined wet and dry) are analysed with two ref-

erence data sets (Large Scale Mean Shift and Manually Delineated

Polygons) to train and evaluate pixel- and object-based classifica-

tions based on RF modelling. The results are  then assessed in terms

of achieved accuracy. Two  additional sub-experiments explore (i)

the impact of wavelets on the object-based classification, and (ii)

the impact of pan-sharpening of the pixel-based classification.

2.3.1. Manually delineated polygons and large scale mean shift

Two alternative reference datasets were considered. The first

consists of Manually Delineated Polygons (MDP) using field infor-

mation, recorded GPS coordinates, geotagged photographs taken

during road trips, and photointerpretation of VHR satellite imagery

and orthophotos. As a  result of this process, between 20 and 30

polygons per class were digitized.

The second reference dataset was based on the Large Scale Mean

Shift (LSMS) segmentation, developed by  Comaniciu and  Meer

(2002). We used LSMS as implemented in the open source software

Orfeo Toolbox version 5.0.0 (Michel et al., 2015). The LSMS algo-

rithm was  parameterized to create segments matching the MDP  as

much as possible, thus delineating small vegetation patches found
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in the MDP. To identify the optimum segmentation parameters, five

increment intervals were ran for each of  the three LSMS parameters

(i.e. 53 combinations in total): the spatial radius, the range radius

and the minimum size. Before running the LSMS algorithm, the

pixel values were rescaled to 8-bit values. From all the candidate

segmentations, we selected an output, providing segments that

most closely matched the MDPs. Optimum results were found using

the following parametrization: spatial radius 15, radiometric radius

20 and minimum size 10. Finally, the class of MDPs was attributed

to the overlapping LSMS segments. This resulted in  approximately

the same number of reference polygons per class for both reference

datasets.

2.3.2. Random forest (RF) classification

We used the non-parametric Random Forest (RF) (Breiman,

2001) classifier. RF is a high performance state-of-the-art machine

learning classifier based on an ensemble of decision trees. It

has many benefits compared to traditional classifiers (Hastie

et al., 2009; Immitzer and Atzberger, 2014; Immitzer et al., 2012;

Gislason et al., 2006; Pal, 2005;  Rodriguez-Galiano etal., 2012;

Schultz et al., 2015):

• insensitive to the number and multi-collinearity of input data,
• no assumptions about distributions needed,
• provides information about the importance of input variables

(e.g., Mean Decrease of Accuracy: MDA), and
• achieves reliable results.

In our study, all classifications were performed using the R pack-

age “RandomForest” developed by  Liaw and Wiener (2002).  The

MDA values are used for feature ranking and selection (Genuer

et al., 2010; Immitzer et al., 2012; Toscani et al., 2013; Schultz et al.,

2015).

To identify the most suitable EO acquisition date and classifi-

cation approach, we tested object- and pixel-based classifications

with three different EO datasets (wet, dry and combined wet and

dry) (Fig. 2). To make the pixel- and object-based assessments as

comparable as possible, we used the same reference data set (i.e.

MDP) for training and cross validation. To segment, and  subse-

quently map, the entire study area with the object-based approach,

the LSMS dataset was used, as the MDP only represent reference

areas and do not cover the study areas in its entirety. This reference

dataset was also assessed through a  pixel-based classification.

Two additional experiments were performed to assess the

impact of spatial resolution and textural features on classification

accuracy. For the pixel-based classification, we investigated the

performance of the (original) 30 m  resolution compared to the pan-

sharpened data. For the object-based classification, we used data

subsets where the textural information was excluded to study the

effect of wavelets on the classification accuracy. The whole process-

ing chain was automatized developing a  script in the open source

statistical software R Version 3.2.3 (R Core Team, 2015).

2.3.3. Feature selection and map production using pixel- and

object-based analysis

For model training and assessment of the pixel-based analysis

(PBA) (Fig. 2), the MDP  reference dataset based on  fieldwork and

photointerpretation was used. Subsequently, the model with the

highest performance was identified and  used to create a classified

map of the study area.

The object-based analysis (Fig. 2)  utilizes solely the pan-

sharpened data. Similar to the pixel-based classification, three

different EO datasets were evaluated. To reduce the number of

input features, we performed for the two reference datasets (MDP

and LSMS) a feature selection following Schultz et al. (2015). The

final map  was created using the best performing LSMS model with

Table 3
Overview of the overall accuracy (OAA) and kappa coefficient for pixel- and object-

based classifications using data collected during different periods of the year (wet,

dry,  combined wet  and dry season). Reference data collected using manually delin-

eated  polygons (MDP) and pan-sharpened input data with ground sampling distance

(GSD)  of 15 m. The object-based approach includes the use of coiflet wavelets.

Wet  Dry  Wet  and dry

Method OAA  Kappa OAA  Kappa OAA Kappa

pixel-based  70% 66% 74% 71% 73% 70%

object-based  67% 65% 75% 74% 78% 77%

reduced feature set. Additionally, we created margin maps pro-

viding a robust measure of classification confidence derived from

the underlying voting procedure (Schultz et al., 2015; Vuolo and

Atzberger, 2014).

2.3.4. Cross-validation

To compensate for the relatively small amount of high qual-

ity reference data for the Prosopis classes, we applied a 10-fold

cross-validation (Kohavi, 1995).  The original reference dataset was

duplicated 10 times, and each time randomly split into training

(90%) and validation (10%) samples. The validation dataset had

always two polygons per class, corresponding to  ca. 10% of the total

sample size per class. A  given reference polygon could be used only

once for validation. By  applying this rule, we generated ten unique

combinations, without repetition of validation polygons.

We kept this set of combinations constant for  all classifications.

The omitted polygons or pixels were assessed by  generating confu-

sion matrices derived from the sum of the 10 classification results

(Foody, 2002).

3. Results

A summary of pixel- and object-based classification accura-

cies and  kappa coefficients using MDP  reference is provided in

Table 3 for wet, dry and combined seasons. All results refer to

cross-validated experiments. Overall accuracies (OOA) show a  large

variability, ranging from 65% to 78% (kappa coefficient between 65%

and 77%).

For both, pixel- and object-based classification approaches, bet-

ter classification accuracy are  achieved using EO data from the dry

season compared to the wet  season. The combined (wet & dry)

dataset further increases the OAA for the OBIA approach. A compre-

hensive overview of the accuracy assessment including individual

classes can be found in Appendices 1 and 2.

3.1. Pixel-based approach

The confusion matrix of PBA achieving the highest overall accu-

racy (73%) is shown in Table 4. Results were obtained by applying

the pan-sharpened wet  and dry season data at 15 m resolution on

the MDP  reference dataset. When evaluating individual classes,

large differences in  user accuracy (UA) and producer accuracy

(PA) are visible. Generally, non-vegetated and agricultural classes

are classified best, with UA and PA mostly in the range 70–90%

(only Rocky soils are  often miss classified as Natural cover <25%).

High accuracies (>70%) are  also found for the relatively dense and

pure Prosopis class (Prosopis >50%). On the contrary, the remaining

Prosopis classes with various coverages and/or mixtures perform

significantly less well (UA and PA in the range 30–40%). Most con-

fusion occurs between sub-classes. Natural vegetation classes show

intermediate classification accuracies with UA  and  PA in the range

40–50%. A particularly high confusion is  noted between Mixed cover

<50% and  Natural cover <50%.

Classifications using data at the original 30 m resolution degrade

the results. For all cases, PBA approach using the 15 m  pan-
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Table  4
Confusion matrix of the pixel-based classification using pan-sharpened (15 m)  wet and dry season EO data and the manually delineated polygons as reference dataset.

Table 5
Overview of the overall accuracy and kappa coefficient for pixel-based (PBA) classi-

fications  using data collected during different climatic and phenological periods of

the  year (wet, dry, combined wet  and dry season). Reference data collected using

MDP  and input data with spatial resolution of 15 (pan-sharpened) and 30  m (original

resolution).

Wet  Dry  Wet  and dry

GSD  OAA  Kappa OAA Kappa OAA Kappa

15  m 70% 66% 74% 71% 73% 70%

30  m 67% 63% 70% 67% 70% 66%

sharpened data provides a higher overall accuracy compared to

the 30 m data (Table 5). The increase in overall accuracy ranges

between three and four percentage points depending on the data

set used (dry, wet and combined).

The increase in accuracy with increasing spatial resolution is not

equally distributed amongst classes. For all three input datasets,

only the Natural vegetation <25% class  shows a consistent increase

in UA and PA when increasing the spatial resolution from 30 to 15 m

(not shown). For the other classes, we observe almost no impact of

spatial resolution.

The variable importance based on  MDA  for the combined wet

and dry dataset at 15 m is  shown in Fig. 3. MDA ranks the fea-

tures from high (top) to low importance (bottom). The results

demonstrate that the best scoring features are the NDVI (from

wet season and dry season) and wet season red band showing the

importance of biomass information (NDVI) and chlorophyll con-

tent (red reflectance) for class discrimination, as high NDVI and red

reflectance correlate with vegetation vigour.

The four least important features are  all from the wet sea-

son. From the dry season reflectances, blue, SWIR2 and red score

highest, whereas green, NIR and SWIR1 have lower importance. A

similar ranking is found for the spectral bands of the wet season,

Fig. 3. MDA  (Mean Decrease Accuracy) of the pixel-based classification using pan-

sharpened  (15 m) wet  (triangle) and dry (dot) season data and MDP  reference

dataset.

with the most noticeable difference that both SWIR bands score

very low.

The map  shown in  Fig. 4 was  produced using the pixel-based

approach and 15 m  EO data combining wet and dry season. The clas-

sification, discussed in more detail in Meroni et al. (2016), shows

good agreement compared to the situation encountered in the field

and reported by Rembold et al. (2015);  Prosopis is  predominantly

found in urban areas (Fig. 4A) and within/along dry river beds

(Fig. 4B).  The drier plains and  mountainous areas are absent of

Prosopis as  well as the large agricultural areas in  the south-west

of the study region.
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Fig. 4. Map  output of the study area using a pixel-based classification and pan-sharpened wet  and dry season EO data at 15 m resolution and the manually delineated

polygons  (MDP)  as reference data set. (A) Snapshot of the Prosopis encroachment in  the vicinity of Hargeisa. (B) Prosopis invasion along the dry river beds. Both situations

were  encountered in the field and have been described in  literature.

The margin map  (Fig. 5)  was generated by differencing the prob-

abilities of the first (majority vote) and second most likely assigned

classes per pixel. Values range from 0 to 1  indicating low to high

confidence in the attribution to the class. The map displays a high

degree of uncertainty of Light soils and sparsely vegetated areas.

High uncertainty values were also achieved for the classes Dark

soils, Wadi soils, Agriculture and Build up.  The Prosopis classes, on

the other hand, received values equal to an intermediate level of

classification confidence.

3.2. Object-based approach

Mapping large areas at  object-level requires an  automated

image segmentation. For this reason, we provide separate results

for the MDP  and the automated LSMS segmentation. The MDP

classification provides a suitable comparison with the pixel-

based classification results reported in the previous section,

while LSMS results are  important for mapping purposes, as

they cover the study area in its entirety. Object Based Image

Analysis (OBIA) results for MDP and LSMS are  summarized in

Table 6.

3.2.1.  Using the manually delineated polygons (MDP)

Compared to the pixel-based classification (Table 3),  the object-

based classification using MDP  and EO data from wet and dry

season at 15 m spatial resolution, increases the classification accu-

racy (Table 6). Similar to the PBA, the combined (wet and dry)

input provides the highest overall accuracy (OAA of 78%); the OAA

decreases compared to the pixel-based approach when only wet

season data is used while a  slight increase is  observed for the dry

data.

The confusion matrix from the best performing (wet and  dry)

dataset is shown in Table 7. Compared to the pixel-based classi-

fication (Table 4), the OBIA approach leads to considerably better

results for  several classes, e.g. for all Prosopis classes, Natural vege-

tation >50%, Irrigated agriculture and  most of the soil classes.

Including texture information using coiflet wavelets slightly

decreases (1%) the overall accuracy of the OBIA using the MDP

reference dataset, except for the wet  and dry season data where

the OAA decreases by  one percent (not shown). A positive effect

of the texture measurement on the OAA was observed when per-

forming the OBIA on the LSMS reference dataset. In this case OAA

was increased by  the use of textural information, regardless of the

temporal dataset used by two to three percentage points.
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Fig. 5. Margin map  for the pixel-based classification using the manually delineated polygons (MDP) as reference. The degree of confidence in the classification is  expresses

from  0 (low confidence) to 1 (high confidence). The area of the margin map  is identical with the classification map shown in Fig. 4.  (A) Detail of the Hargeisa and high

confidence  of the build up and rocky soils classes. (B) The dry river bed (Wadi sand) can be easily distinguished as high confidence areas together with the Nat <25% class.

Table  6
Overview of the overall accuracy (OAA) and kappa coefficient for object-based classifications using pan-sharpened data at 15 m collected during different periods of the year

(wet,  dry, combined wet  and dry season). Reference data collected using Manually Delineated Polygons (MDP) and automated segmentation (LSMS).

Wet  Dry Wet  and dry

Reference Coiflet OAA Kappa OAA  Kappa OAA  Kappa

MDP  Yes 67% 65% 75% 74% 78% 77%

MDP  No 68% 66% 76% 75% 77% 76%

LSMS  Yes 63% 60% 70% 68% 71% 69%

LSMS  No 60% 57% 68% 66% 69% 67%

3.2.2. Automated LSMS segmentation

The classification results of the OBIA using the Manually Delin-

eated Polygons (MDP) indicate that higher accuracies can be

achieved by applying an object-based approach. However, this

approach cannot be used to segment large areas. To classify the

entire study area, we therefore repeated the classification by substi-

tuting the MDP  with the automated Large Scale Mean Shift (LSMS)

segmentation. Table 8 presents the confusion matrix of the best

object-based result using both wet and  dry season data, recording

an overall accuracy of 71%. Compared to the object-based classifi-

cation using the MDP  (Table 6)  the overall accuracy decreases by

approximately four to six percent.

The difference between MDP  and LSMS amounts up to eight

percent (not shown). When comparing the LSMS results to the

pixel-based classification results (Table 5), the overall accuracy

drops by one to seven percentage points depending on the season.

Only for Natural vegetation <50% and <25% LSMS outperforms the

pixel-based classification as well as the object-based classification

using the MDP.

The MDA  (Fig. 6) highlights the importance of  NDVI for the clas-

sification. Six out of the top eight features refer to NDVI, with the
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Table  7
Confusion matrix of the combined classification results for the object-based classification of the wet  and dry season data at 15 m resolution, using the coiflet wavelets and

the  MDP  reference data set. Values refer to number of polygons.

Table 8
Confusion matrix of the best object-based method using LSMS segmentation. Inputs are wet  and dry season data and coiflet wavelets from 15 m pan-sharpened EO data.
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Fig. 6. MDA  of the object-based classification using the LSMS reference data set on the wet  and dry season data and including the coiflet wavelets.

mean of the dry season NDVI being the most important band, fol-

lowed by the median of the dry season NDVI and the 75th percentile

of the NDVI of  the wet season. The blue band (as textural measure

and 75% percentile) occurs twice in the top eight.

4. Discussion

4.1. Seasonality

Our results confirms that the timing of image acquisition has a

noticeable impact on the classification accuracy (Mirik and Ansley,

2012a; Van Den Berg et al., 2013; Wakie et al., 2014). In our study,

the highest overall accuracies are achieved using the combined wet

and dry season data. Analysed separately, the dry season data was

far more important compared to the wet season. The finding is in

agreement with the known ecology of  Prosopis.  Thanks to its deep

rooting system (Yoda et al., 2012) and metabolic coping system (Sen

and Mehta, 1998), it remains relatively green throughout the year

while endemic species (e.g. acacia spp.) shed their foliage during

the dry season (Wakie et al., 2014). The use of the dry season image

therefore increase class separability as noted by Wakie et al. (2014).

The importance of  dry season data is further confirmed by  the

fact that the lowest class-specific accuracies for  the Prosopis and

Mixed Prosopis classes are  found using the wet season image. Sim-

ilarly, the Irrigated agriculture class scores notably better during

the dry season. Irrigated agriculture is often mixed up with Rain

fed agriculture during the wet season as  irrigation-related growth

differences are likely blurred.

4.2. Object- and pixel-based analysis

Our study produced an improved pixel-based Prosopis cover

map for the Hargeisa area building on the work performed by

Rembold et al. (2015) (Fig. 4)  and described in more detail by Meroni

et al. (2016). Looking at cross-validated results (Tables 3  and  5), we

found that the highest model accuracies are achieved by performing

an object-based classification using manual delineated polygons

(MDP) for reference. However, this manual method can obviously

not be implemented for classifying the entire study area. When sub-

stituting the MDP  with the LSMS reference dataset, which covers

the entire study area, the accuracy drops (the OAA from 78 to 71%

using combined wet  and dry data). For comparison, the pixel-based

approach yields an OAA of 73% (kappa: 0.70), thus rendering the

pixel-based classification the better option. The advantage of the

pixel- based classification becomes even more evident, when com-

paring the two  map  products where the OBIA approach revealed

stronger mis-classifications (not shown).

The reduced accuracy of the LSMS reference data set can be

directly attributed to its generation. The MDP are an “optimal” ref-

erence dataset, tailored to fit each class individually, with a large

variety of  polygon sizes. For instance the MDP  of Prosopis classes

were typically small (i.e. from 6 to 74 pixels as  15 m)  whereas the

bare and sparsely vegetated areas were represented by  large and

homogenous polygons including hundreds of pixels (Table 1). The

LSMS segmentations were generated to resemble the high quality of

the MDP. However, the LSMS was  unable to generate the same high

quality reference polygons for all classes. As segmentation parame-

ters cannot be class-specific, we  opted for a  fine scale segmentation

to differentiate between the small vegetated patches. This led to

an over-segmentation of the large homogeneous soil classes. As a

consequence, class separability decreased compared to MDP.

Further improvements can be achieved through the method

proposed by Özdemir et al., 2010,  where the matching stage was

implemented to find correspondences between reference (MDP)

and output objects (LSMS). The authors induced a multi-object

maximum overlap matching algorithm, a  multi-criteria ranking

procedure combining precision, recall, and detection accuracy

scores, and produced a final ordering of different detection algo-

rithms for evaluating the results.
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Another consequence of the small size is the effect on  the

Prosopis classes, when applying the OBIA approach and the MDP.

Some MDP, mainly found in the Prosopis and mixed classes, were

too small and could not be used to extract any meaningful statisti-

cal information, used as  features in the RF  classifier. Thus, we opted

to use only pan-sharpened data and setting a minimum segment

size to 10 pixels for the LSMS segmentation, reducing quality of the

training dataset.

Our findings are in line with Gao and Mas  (2008) who compared

pixel- and object-based classifications using Spot 5  and Landsat

data resampled to 10, 30, 100 and 250 m resolution. Their results

show that a decrease in spatial resolution degrades the object-

based classification results. In their study, the OBIA approach

outperformed the pixel-based classifications for the data sets with

the highest spatial resolution.

The importance of spatial resolution data was  also empha-

sized by Mirik and Ansley (2012b). They applied an object-based

classification on both 1 and 30 m  spatial resolution data for the

quantification of canopy cover and infilling rates of Prosopis glan-

dulosa. Their results, using four classes, show a  significant increase

in accuracy (OOA 93.7%, Kappa 0.89) when using 1  m  aerial images

compared to 30  m Landsat TM 5 data (OAA 86.9%, Kappa 0.77).

4.3. Feature importance

In our study, the feature importance ranking based on the MDA

was implemented to reduce the number of features, thus minimiz-

ing over-fitting and increasing model robustness. NDVI, blue, red

and SWIR bands were the most important features for the (pixel-

based) classification, while for the object-based classification the

NDVI is considered the most important band. This contrasts with

findings of Robinson et al. (2016) that showed the effectiveness of

an object-based image classification targeting Prosopis in Australia

using very high resolution (VHR) WorldView-2 data. The study

assessed WorldView-2 bands through Variable Importance in the

Projection scores to identify which bands offer the highest capacity

for Prosopis discrimination. The study reported high accuracies for

Prosopis detection and  concluded that the two near-infrared bands,

followed by the red-edge and red band were the most suitable

for species discrimination. As completely different sensors were

used in our and Robinson’s study, with different bands, band set-

tings, acquisition dates and spatial resolutions, further research is

necessary to draw resilient conclusions.

Except for the mixed Prosopis and Natural vegetation classes,

the object-based classifications performed better compared to the

pixel-based approaches. We argue that the object-based analysis

was able to extract more information from highly heterogeneous

classes, such as mixed and natural vegetation. The pixel-based

approach, on the other hand, was  unable to account for all the

variability within the reference polygons.

In line with the results described by Toscani et al. (2013) and

Koger et al. (2003),  we found that the coiflet wavelets permit an

increase in accuracy. Our results also show that pan-sharpening

(slightly) increases the overall accuracy for the pixel-based classi-

fications similar to the findings of  Makarau et al. (2012) and Colditz

et al.  (2006). For the OBIA approaches, however, objects in our

study were often too small for using 30 m data. Hence, only pan-

sharpened data at  15 m spatial resolution was  used for MDP  and

LSMS based classifications.

5. Conclusions

We conclude from our research, that the pixel-based approach

provides the best results for the classification of Prosopis with Land-

sat 8 data. The application of wet and dry season, pan-sharpened

data and the high quality manual delineated reference polygons

contributed to the high classification accuracy. On the other hand,

the automatically delineated reference polygons provided satisfac-

tory results only for the reference dataset; application to the entire

study area showed several shortcomings not observed using the

pixel-based classification. These findings, however, do not allow to

dismiss the effectiveness of the OBIA approach in general. In our

study, the LSMS segmentation did not allow to capture the specific

nature of Prosopis in Somaliland, as the spatial resolution of the

Landsat 8 dataset was  too coarse to resolve the patchy Prosopis often

mixed with natural vegetation. Thus, the potential benefits of the

object-based approach could not be fully exploited. We  therefore

recommend repeating this exercise on very  high spatial resolution

satellite imagery such as WorldView-3 as  well as  on  time series of

Sentinel-2 with 10 m  pixel size. With spatially better resolved EO

data (as compared to Landsat), we expect that the OBIA approach

will show its real strengths.
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