

S

IDENTIFICATION OF POTENTIAL HIGHER GROUNDS SUITABLE FOR EVACUATION DURING A FLOOD

EVENT

JUBA & SHABELLE RIVERS

Introduction

Somalia has been grappling with the enduring and escalating impacts of climate change. One of the most tangible manifestations of this environmental challenge is the recurrent occurrence of riverine and flash flooding across various regions within the country. The consequences of these flood events have been particularly pronounced in major urban centers, such as Beletweyne and Jowhar, where the devastation and loss has been substantial. According to an analysis undertaken by FAO-SWALIM, 79% of beletweyne town was inundated during the 2023 Gu rainy season.

In view of this, there is a pressing need to formulate and implement a comprehensive set of strategies aimed at both prevention and protection. These measures are imperative to safeguard lives and mitigate the staggering economic losses associated with flood disasters.

One key component of this strategy is proactive flood management, which entails the timely evacuation of areas at risk of flooding before the onset of disaster. This step is paramount to minimize the loss of both property and human lives. However, it is essential to consider the coordination of such evacuations, including identifying suitable higher ground where displaced individuals can be relocated.

Identifying appropriate elevated terrain serves a dual purpose: it ensures the safety of those at risk and provides a strategic vantage point for delivering essential services and humanitarian aid. Access to clean water, shelter, food, and medical assistance becomes more viable in areas that are less prone to flooding.

To attain these objectives effectively, a rigorous methodology has been developed and applied. This methodology is designed to comprehensively understand the dynamics of flood events in Somalia. It considers factors such as historical flood patterns, land use land cover, Water availability and terrain analysis to pinpoint potential high-ground evacuation sites.

Datasets Used in the Analysis

A total of 9 derived datasets were used to undertake a suitability analysis to identify the potential areas for location of a flood evacuation site namely:

- 1. Flood Extent
- 2. Elevation
- 3. Slope
- 4. Topographic Wetness Index (TWI)
- 5. Drainage Density
- 6. Strategic Boreholes
- 7. Settlements
- 8. Land Cover and

9. Roads

Methodology

Based on predefined criteria as indicated in table 1 below, each of these datasets were first clipped to areas outside the flood extent but within a maximum distance of 10 Km from the flood extent boundary. The outputs were then reclassified into two classes namely; Suitable and Not Suitable. Using an iterative approach, each of these datasets was used to assign a weight to the suitability of a site. These weights are indicated in table 2 below. Thereafter, a multi-criteria evaluation weighted overlay operation was undertaken to determine the potential areas for evacuation sites. An area was then computed for the potential sites and their distance from the flood extent established.

The output was then post – processed to remove invalid geometries and each site was ranked based on the distance from the flood prone area. Sites closer in distance were deemed most suitable, hence a higher rank.

The final layer was then visually checked based on the density of the topographic Wetness Index (TWI) which is based on runoffs during floods. Areas with dense TWI were eliminated to remain with only continuous areas.

Dataset	Source	Suitability Criteria	Reasons
Flood Extent	Merge of	The area had to be away	Areas within the flood
	SWALIM	from the flood extent but	extent are vulnerable thus
	historical extent	within a maximum	not suitable for evacuation.
	and GLOFAS	distance of 10 Km from	On the other hand,
	El Nino forecast	the flood extent	evacuation may often
	Extent	boundary.	involve movement through
			walking or the use of
			animals. Far evacuation
			areas may not be effective
			since people may choose to
			settle in areas near their

Suitability Criteria

Elevation	SRTM 30 Metre	Variable Beletweyne - (200 – 250 Metres) Jowhar - (120 – 180 Metres. Afgooye - (100 – 180	displaced areas as they await the situation to normalize. Area must be higher than the flood plain. Equally, these areas must be flat that is suitable for resettlement.
		Metres) Dollow & Luuq - (180 – 250 Metres) Baardheere - (100 – 200 Metres) Derived by analysis of the profile of the flood extent. Area must be greater than maximum elevation within the flood extent profile.	
Slope	Derived	Areas that have a slope of <20 degrees.	Area must be flat or undulating to allow easy flow of water through the settlement. Steep areas may be unsuitable for housing or temporary economic activities.
Topographic Wetness Index (TWI)	Derived using SAGA Tools	Areas with an index of less than 18	Area with higher TWI is along drainage channels that may be prone to flash flooding.

Drainage	River Network -	Areas that are greater	Drainage networks serve as
Density	SWALIM	than 70 metres from	conduits for water across the
		drainage network	channel. While some of
			these areas are often dry,
			they may be prone to flash
			floods during wet seasons.
			Situating the evacuation site
			further away from these
			areas will help to mitigate
			secondary loss occasioned
			by flash floods. On the other
			hand, drainage networks are
			ubiquitous hence it is not
			possible to exclude them
			entirely, thus a 70 metre
			buffer was deemed
			sufficient.
Strategic	SWALIM	Areas within a maximum	Water is required to sustain
Boreholes/		radius of 2 Km of a	the various needs of the
Strategic		borehole for Beletweyne	evacuated population. It is
WaterSources		and Jowhar. In other	thus important that such
		Districts where	areas be in proximity to
		assessment was	strategic water sources
		undertaken, a merge of	(Boreholes). Open water
		the 2018, 2020 and 2022	areas were excluded since
		strategic water sources	they may be contaminated
		data was used since these	with flood water thus
		areas have few or	making it unsuitable for
		nonexistent boreholes	consumption.
		data.	

Settlements	GRID3	Settlements that are	The existence of a
	Settlement	greater or equal to 5 ha in	settlement in the area was
	Dataset	size	the first criterion.
			Settlements of at least 5 ha
			hold a sizeable population,
			indicating the suitability of
			the area for human
			settlement. Further, they are
			likely to be in proximity to
			related services such as
			markets, schools etc. that
			may be necessary to settle
			the evacuees.
Land Cover -	Dot Grid -	Areas of Suitable	To reduce environmental
	SWALIM	landcover such as bare	damage, forested areas or
		area, built up areas or	areas with dense woody
		natural with sparse	vegetation were excluded.
		vegetation class from the	On the other hand, areas
		Dotgrid were deemed	such as water bodies and
		suitable.	irrigated farmlands are
			unsuitable to hold
			populations.
Roads	Open Street	Areas that are a	These road classes were
	Map (OSM)	maximum of 2 Km from	deemed motorable roads,
		primary, secondary, or	increasing the ease of access
		tertiary roads. Osm roads	for delivery of humanitarian
		were used and only these	support if any.
		classes of roads were	
		selected.	

Weights Used for each criterion.

Dataset	Suitability Weight Percentage
Flood Extent	Boolean – Areas had to be outside of flood
	extent
Elevation	12
Slope	10
Topographic Wetness Index (TWI)	8
Drainage Density	8
Strategic Boreholes	10
Settlements	25
Land Cover -	12
Roads	15

Conclusion

This analysis entailed remote sensing techniques. Consequently, a field verification is required to ascertain the suitability of each site before proceeding with investments in the area. Implementing agencies, should put consideration to the following sustenance factors that may be crucial for the evacuated persons that have not been considered due to the lack of data on the same.

Proximity to schools or other institutions where the evacuated persons may be hosted, proximity to healthcare facilities, pest conditions among others that may be key. Implementing agencies should apply discretions when selecting the target sites.

References

Isa Ibrahim, Kolawole H. Muibi, Abayomi T. Alaga, Oyekanmi Babatimehin, Olusola Ige-Olumide, Oloko-Oba O. Mustapha, Sedenu A. Hafeez, Suitability Analysis of Resettlement Sites for Flood Disaster Victims in Lokoja and Environs, World Environment, Vol. 5 No. 3, 2015, pp. 101-111. doi: 10.5923/j.env.20150503.02.

Parajuli, G., Neupane, S., Kunwar, S., Adhikari, R., & Acharya, T. D. (2023). A GIS-Based Evacuation Route Planning in Flood-Susceptible Area of Siraha Municipality, Nepal. ISPRS International Journal of Geo-Information, 12(7), 286. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ijgi12070286