

Food and Agriculture Organization of the United Nations

Programme for Sustainable Charcoal Reduction and Alternative Livelihoods (PROSCAL)

Technical Report

Analysis of very high-resolution satellite images to generate information on the charcoal production and its dynamics in South Somalia from 2011 to 2017

February 2018

Somalia Water and Land Information Management

Ngecha Road, Lake View. P.O Box 30470-00100, Nairobi, Kenya. Tel +254 020 4000300 - Fax +254 020 4000333, Email: <u>swalim@fao.org</u> Website: <u>http://www.faoswalim.org</u>

Funded by the European Union, Agenzia Italiana per la Cooperazione allo Sviluppo, Sweden and implemented by the Food and Agriculture Organization of the United Nations

FAO SOMALIA – SWALIM PROSCAL UN Joint Programme

Technical report

Analysis of very high-resolution satellite images to generate information on the charcoal production and its dynamics in South Somalia from 2011 to 2017

Publication by FAO - SWALIM

Food and Agriculture Organization of the United Nations Somali Water and Land Information Management United Nations Somalia, Ngecha Road Offices P.O. Box 30470 – 00100, Nairobi

February 2018

Funded by:

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations and the SWALIM Project concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries.

This document should be cited as follows:

1,Bolognesi M., 1Leonardi U.,. Analysis of very high-resolution satellite images to generate information on the charcoal production and its dynamics in South Somalia from 2011 to 2017. Technical Project Report. FAO-SWALIM, Nairobi, Kenya. 2018.

1 FAO-SWALIM, Nairobi, Kenya.

Contents

Background4
1. Estimation of charcoal stored in the stockpiles sites identified along southern Somalia
coast, through the analysis of VHR satellite images and photographs
1.1 - KISMAYO11
1.2 – BUUR GAABO14
1.3 - BUSCBUSC16
1.4 - KODAY17
1.5 – QODDO
1.6 – BAARAWE
2. Analysis of charcoal production occurred in the area of interest of South Somalia over the period 2011-2017 covered by multi-temporal VHR images
2.1 - Analysis of kiln size distribution29
2.2 - Analysis of production dynamics
3. Discussion and Recommendations
References41
ANNEX I – Detailed summary of VHR satellite images used to assess area covered by
charcoal stockpile in Kismayo by site
ANNEX II – List of VHR satellite images used to detect charcoal sites and stockpiles

Background

In developing countries, woodfuel accounts for 50 to 90% of the total energy used (FAO, 2010) and is the main source of household energy (Zulu and Richardson, 2013). The woodfuel related market is an important source of income for many people (Clancy, 2008). Evidence exists that at the local level it can have significant impacts on forest degradation (FAO, 2010; Kanninen et al., 2007). Charcoal is the dominant form of woodfuel used by urban households in Africa and other developing countries (Akpalu et al, 2011).

Charcoal is made by burning wood in a low-oxygen environment. According to FAO statistics, Africa accounts for 55% of the global charcoal production (FAO, 2014). However, these charcoal production estimates are often inaccurate when disaggregated at the national level. For many African countries, detailed information is lacking partly due to the informality and clandestine nature of production sector and the scattered production by rural population (Mwampamba et al, 2013). Estimates are consequently based on analytical and projection models that use woodfuel information of countries in similar socioeconomic and geographical situations, or by multiplying the country population by a per capita estimate based on a literature review carried out in 1980 (Wardle and Pontecorvo, 1981; Whiteman et al., 2002). The datedness of some of the estimates that are used as input in combination with the difficulty of data collection, makes that national charcoal production data are often at best "guesstimates" with limited accuracy (Mwampamba et al., 2013). Levels of woodfuel harvesting may be in balance with the productive capacity of the wood stocks, but overall tree loss occurs when the intensity of woodfuel production prevents regeneration and therefore sustainable production (Ribot, 1998).

In Somalia, charcoal production is not only triggered by domestic consumption, which accounts for less than a fifth of the total production and is the main source of energy in urban areas such as Mogadishu and Hargeisa (UNEP, 2005), but mostly by foreign demand, which accounts for the remaining proportion (SEMG, 2018). In fact, charcoal has developed into one of the major export products, and is sometimes referred to as "black gold" (Bakonyi and Abdullani, 2006; UN Security Council, 2011). While part of the charcoal exported from Somalia may originate from neighbouring countries like Ethiopia, the bulk of the exported charcoal is produced in Somalia itself (Belward et al., 2011). Even if national production estimates may be inaccurate (Mwampamba et al., 2013), the FAO database indicates a significant increase in production levels, i.e. from about 180,000 tonnes in 1961 to 420,000 tonnes in 1991, to almost 1.2 million tonnes in 2012 (FAO, 2014). Since the collapse of Somalia's central government in 1991, militia groups fight for political control and finance their activities partly with illegal charcoal exports (UN Security Council, 2011; UNEP, 2014). For this reason, in February 2012 under resolution

2036 the UN Security Council banned charcoal export from Somalia, regardless of the origin of the charcoal. The charcoal trade is the main driver of the fast depletion of forests and woodlands in Somalia (UNEP, 2005).

Despite high exports of charcoal from Somalia, and its contribution to tree cover loss, consequent land degradation (Omuto et al, 2009; Richardson et al., 2010), and reduction of ecosystem services provided by trees (ICRAF, 2014), little quantitative information on tree cover loss in Somalia during the past two decades is available. Moreover, Somalia is predicted to be one of the nine African countries that will face water scarcity by 2025 (Boko et al., 2007), and therefore land degradation will worsen the water scarcity effects by increasing the population's vulnerability to drought (Holleman, 2003). Given the limited security in large parts of Somalia in the last 20 years, and especially in the southern and central parts of the country since 2006, when the Islamist terrorist group Al-Shabaab took control, field surveys have been impossible to execute and consequently direct evidence of tree cover changes can exclusively be obtained through remote sensing. Tree cover clearances for charcoal production in Somalia (Rembold et al., 2013; Bolognesi et al., 2015) showed that loss of tree cover can be estimated by the identification of charcoal production sites, as they form clear circular objects that are spectrally different from their surroundings.

The technical report presented in the following pages contributes to the Output 1.2 "Monitoring Systems of Charcoal Production, Reporting and Movement in Somalia" of that component of the UN Joint Programme for Sustainable Charcoal Reduction and Alternative Livelihoods (PROSCAL) funded by Italy and Sweden.

The available information on charcoal production and export is limited and lacks continuity to establish trends over a period of time. FAO SWALIM has undertaken the monitoring of the impact of charcoal production on the natural vegetation and its dynamics. Through very high-resolution satellite images, it is possible to identify and count charcoal burning sites and to derive from them the number of trees cut per unit area and the amount of charcoal produced. SWALIM Remote Sensing Unit has regularly analysed satellite imagery of the representative areas and reported on charcoal production sites dynamics.

Sites are identified by comparing satellite images acquired in different years. Satellite images also allowed for monitoring activities occurring in the locations where charcoal is stored in stockpiles ready for export.

HOW IS CHARCOAL PRODUCED?

The charcoal production method carried out in the study area is known as the Bay Method, and it was described by Robinson (1988). To produce charcoal, a type of oven known as 'kiln' is used. Kilns are built by piling the timber straight on the soil floor. The timber is collected from the surroundings and arranged into a circular mound design, with stronger poles erected at the centre, and other shorter pieces of wood positioned around it. The mound is packed as close as possible, and the gaps are filled with smaller pieces of wood, shrubs, and grass to facilitate kiln lighting. The whole structure is then buried with sand and iron sheets. Once the burning process is completed, the charcoal is formed and it is loaded into bags, leaving a layer of black ashes on the ground that is visible on satellite VHR images.

NOTE: The above photographs, showing the setup of a kiln for charcoal production, have been taken in Puntland (Northern Somalia) where the dry environment is very different as compared to the more humid found in South Somalia. This difference is reflected in the amount of trees used to setup a single site and in the size of the kilns, which in South Somalia can reach up to 20 meter diameter, as observed in this study.

The VHR imagery was provided by the U.S. Department of State (USDS) Humanitarian Information Unit, under the NextView License. The images used to produce this study are listed in ANNEX II.

1. Estimation of charcoal stored in the stockpiles sites identified along southern Somalia coast, through the analysis of VHR satellite images and photographs.

Charcoal has developed into one of the major export products (UNEP, 2005) and it is estimated that 4.4 million trees are logged annually to produce 250,000 tonnes of charcoal exported every year from Somalia to Saudi Arabia, Yemen, Bahrain, Kuwait, Oman and the United Arab Emirates. The UN Security Council banned charcoal export from Somalia, regardless of the origin of charcoal. However, illegal charcoal trading is continuing and VHR satellite images and photographs (from ground and helicopter) have been used to estimate the amount of charcoal stored in various stockpiles sites spotted along southern Somalia coast. Six charcoal stockpiles sites have been identified and they are located in: Baraawe, Kismayo, Kodai, Buur Gaabo, Buscbusc, and Qoddo, with Kismayo and Buur Gaabo being the most important ones in terms of site extent and amount of charcoal stocked.

Fig.1 - Charcoal stockpile locations - © Google Earth

A standard charcoal bag weight 27kg and stocked bags have been estimated as per the following formula:

area covered by charcoal stockpiles (m²) / dimension of the base of a charcoal bag (0.4 m²) x average number of bags piled up (15 bags)

The *area covered by charcoal stockpiles* has been estimated through visual interpretation of available satellite imagery. The *dimension of the base of a charcoal bag* has been set to 0.4 m² based on local experts' knowledge, reporting the charcoal bag dimension to be of 80 cm in length and 50 cm in width. The *average number of bags piled up* has been set to 15 following the analysis of photos taken at Buur Gaabo and Kismayo storing sites, and it is considered a conservative measure as stockpiles can be higher.

Fig.2 - Example of visual interpretation of Buur Gaabo charcoal storing site. The area covered by charcoal stockpiles has been outlined in yellow (Image: Worldview-2, 9 October 2016) - © [2016] DigitalGlobe

Fig. 3 Photos of Buur Gaabo site (taken from helicopter on 14th June 2017)

Fig.4 - Photos of Kismayo site (taken on 28th June 2017)

The estimation of charcoal stockpiles from VHR imagery and photographs is described in the following pages. Image quality and extent of charcoal stock areas for Baarawe, Buscbusc, Kodai and Qoddo did not allow for analysis at the same level of details as done for Buur Gaabo and Kismayo.

1.1 - KISMAYO

Fig.5 – Locations of charcoal stockpiles in Kismayo - © [2018] DigitalGlobe

Kismayo has three stockpile locations on the outskirt of the city. Site K1, on the road to Afmadu (North), site K2 on the road to the airport (West) and site K3 just South-West of site K2, towards the shore. Very high resolution imagery was available only for December 2012 and from January 2015 onward. Between these two dates, stockpile storing on site K2 stopped, whereas storing on site K3 emerged as a new stockpiling site. Recent images still show black ground covering the area of site K2 as if still covered in charcoal ashes, but no charcoal bags are detectable.

Panchromatic scenes have the limitation of offering only one spectral band and, consequently, they provide less information compared to multispectral imagery. For this reason, on panchromatic images covering site K1 (placed inside a urban context), it is difficult to distinguish charcoal stockpiles from surrounding objects such as huts or stockpiles of other material, and interpretation may be less accurate than the one performed on multispectral images (Fig.6). Vice versa, site K3 is placed in the outskirts of Kismayo where no urban objects

are present and panchromatic images can be interpreted with good accuracy, as the only object present in the area are stockpiles (Fig.7).

Fig.6 - Detail of Kismayo K1 site on a panchromatic image. Charcoal stockpiles do not appear as distinct from other structures as seen on multispectral images, where stockpiles are identifiable thanks to the bluish colour typical of charcoal bags - © [2016] DigitalGlobe

Fig.7 - Detail of Kismayo K3 site on both panchromatic and multispectral image. On multispectral images, stockpiles are identifiable thanks to the bluish colour typical of charcoal bag or the orange tarps cover. However, the area surrounding the site is a rangeland and the only manmade objects present are the charcoal stockpiles, which make them detectable - © [2018, 2017] DigitalGlobe

The table in ANNEX I includes a detailed summary of available images, area covered by charcoal stockpiles per image and estimated amount of charcoal bags per site.

Figure 8 shows estimated amount of charcoal bags for K1 and K3 sites and respective image date. Amounts are given in ranges to account for visual interpretation inaccuracy.

Fig.8 – Estimated amount of charcoal bags for Kismayo K1 and K3 sites

An analysis in fluctuation of stockpile sizes can be attempted, but not completed due to cloud cover and temporal gaps in available images. Factors that need to be taken into consideration when analysing the results for both Kismayo and Buur Gaabo (in the following pages) are:

- Seasonality: there are four distinct seasons: two rainy seasons (Gu April to June, and Deyr – October to December), and two dry seasons (Jilaal, the main one – January to March, and Hagaa – July to September). It is likely that during rainy seasons the production of charcoal decreases.
- 2) The Somalia and Eritrea Monitoring Group reported that the flows toward the stockpiles were likely more consistent and regular in 2017 as compared to 2015 and 2016, as "Al Shabaab has resumed systematic checkpoint taxation instead of attacking and jailing burners and traders in areas under its control". This could have caused an increase in recent stockpiles.
- 3) The production rate can also be affected by sanctions enforcement. The Somalia and Eritrea Monitoring Group in 2016 noticed a temporary drop in exports from May to July, which is believed to be a response to confiscations of cargoes by the UAE.

1.2 - BUUR GAABO

Fig. 9-10 – VHR images of Buur Gaabo site - © [2015, 2016] DigitalGlobe

Unlike Kismayo, panchromatic scenes of Buur Gaabo are easier to interpret, because no objects that can appear similar to charcoal piles are found in the vicinity. It is clear from multispectral images that the site is used only for storing charcoal bags. The results below include areas covered by charcoal stockpiles per image and estimated amount of charcoal bags per site (given in ranges to account for visual interpretation inaccuracy).

Figure 11 shows estimated amount of charcoal bags per image date. Amounts are given in ranges to account for visual interpretation inaccuracy.

Fig. 11 - Estimated amount of charcoal bags for Buur Gaabo.

1.3 - BUSCBUSC

Fig.12-13 – VHR images of Buscbusc site - © [2008, 2011] DigitalGlobe

Buscbusc site has been used in the past for storing charcoal, as stockpiles are visible on images dated 2008-2011. However, it was of very small size as at its maximum extension was covering an area of about 2,000 m². It seems to be no longer used for storing as no stockpiles are visible in recent dates. Nonetheless, the ground appears black as if covered by charcoal ashes and we can presume it is used as a transit location to transport charcoal to Buur Gaabo, which is about 25 km down the homonymous stream.

1.4 - KODAY

Fig.14-15 – VHR images of Koday site - © [2013, 2014] DigitalGlobe

Stockpiles are visible on all 2011 images of Koday site. Only few stockpiles are present on 2013 images, while June 2014 scene (even if partially covered by clouds) captured a peak of storing activity, with many stockpiles and boats ashore observable. In the March 2015 image,

stockpiles appear to be back to the level observed in images of 2013 and to fade into just traces of black ashes on following dates (period 2015-2017).

1.5 – QODDO

Fig.16-17 – VHR images of Qoddo site - © [2015, 2017] DigitalGlobe

Up to December 2012 no stockpiles are visible at the Qoddo site. They appear for the first time on December 2014 image, with maximum site extension visible on April 2015 scene. The site

looks active as of October 2017 (latest image available), but with significant less charcoal stored when compared to April 2015.

1.6 – BAARAWE

Fig.18-19 – VHR images of Baarawe site - © [2014, 2016] DigitalGlobe

Baarawe site images show the following estimated areas covered by charcoal stockpiles: February 2010: 10,000 m²; March 2011: 7,000 m²; October 2014: 2,000 m². As per the image of 29 January 2015, site appears cleared from charcoal bags except for some stockpiles covered with orange plastic tarps that do not change up to 22 October 2016 (last image available). These structures cover an area of about 1,500 m².

Following the arrest of various officials exporting charcoal, after the capture of Baarawe from Al Shabaab by Somali National Army and AMISOM (African Union Mission in Somalia) forces in October 2014, the Somalia and Eritrea Monitoring Group believe that the trade in Baarawe has ceased. Baarawe was Al Shabaab's principal port for export after they lost Kismayo to AMISOM. Since late November 2015, evidence collected by the SEMG, including regularly updated satellite imagery and aerial surveillance of the city's port and stockpiles, suggests that charcoal trade in Baarawe and the surrounding area has stopped (SEMG, 2015). 2. Analysis of charcoal production occurred in the area of interest of South Somalia over the period 2011-2017 covered by multi-temporal VHR images.

The FAO SWALIM remote sensing unit performed visual interpretation of multi-temporal veryhigh resolution satellite images listed in ANNEX II over an area of about 37,000 km².

Fig.20 – PROSCAL study area - © Google Earth

The analysis of the interpretation results was performed following the reference methodology described in the article "Rapid mapping and impact estimation of illegal charcoal production in southern Somalia based on WorldView-1 imagery" (Bolognesi et al., 2015). The amount of charcoal produced can be estimated by linking the identified number and size of charcoal production sites with the production capacity of each site. To estimate the volume of timber used, the kiln mound is assumed to be comparable to the geometric shape of a spherical cap. The list below identifies the relevant parameters for calculations and their ranges. These ranges were derived from existing studies and local expertise.

 A lower size threshold of 2 m radius was adopted to filter out all smaller sites that would be highly susceptible to interpretation error. Likewise, a higher threshold of 11 m radius was set as no kiln of such dimension, or greater, has ever been documented.

- 2) To calculate the volume of the spherical cap, two values are needed: the height of the spherical cap, and the radius of the base circle. Based on local expertise and previous studies (MPDES-CHE, 2004), two possible kiln height values were adopted, i.e. 1.5 m and 2.0 m.
- One meter was subtracted from all recorded kilns radius to account for spreading out of charcoal ashes after the kiln is uncovered and the charcoal is being transferred into bags.
- 4) The timber stacking inevitably leaves gaps between timber pieces and other materials that are used for the kiln construction (grasses and shrubs for kiln lightning). Therefore, a range between 20% and 40% of volume subtraction was adopted to account for space occupied by air and other materials.
- 5) A wood-to-charcoal conversion efficiency of 20% was assumed based on values provided by the majority of sources for this type of charcoal production in Somalia and other tropical regions (Bird and Shepherd, 1989; ICRAF, 2014; MPDES-CHE, 2004; Robinson, 1988). Nonetheless, the current intense charcoal production practices may have reduced efficiency levels as compared to cited studies, but hard data on this is lacking.
- 6) Water is present in wood, both in bound form in cell walls, and as free water inside cells and between cell cavities. The average timber moisture was set to 47% following studies by Bird and Shepherd (1989) and Robinson (1988).
- 7) The dry-wood density is the wood mass per unit of volume and it differs for different tree species. Density was assumed to range between 500 kg/m³ and 700 kg/m³ based on the key species of Acacia bussei, Acacia senegal, Acacia tortilis, and Terminalia species (Bird and Shepherd, 1989; Robinson, 1988).

The following conversion table is the result of the methodology described above, and shows charcoal amounts produced per site, based on kiln radius size, and equivalent number of charcoal bags. The mean values are based on all possible combinations of the assumed low/high values.

Site radius	Charcoal mean	Bag mean
(m)	(kg)	(no.)
1	252	9
2	675	25
3	1,329	49
4	2,244	83
5	3,420	127
6	4,858	180
7	6,557	243
8	8,518	315
9	10,740	398
10	12,636	468

FAO SWALIM remote sensing unit identified and recorded all kilns (observed as black dots) over the period 2011 – 2017 on the satellite images acquired. Not all the satellite images available covering the study area have been acquired and analysed; a screening was done considering the most suitable images (cloud cover, seasonality) able to fully cover the study area.

Since kiln sites can still be detected after two or more years from their first use, sites were counted only for the first image on which they appear to avoid double counting. However, during the analysis it has been observed that in a couple of cases the same kiln site have been utilized in different years to produce charcoal. This observation was noticed thanks to a more intense black colour, a rounder shape and a bigger size of the kiln sites detected as compared to their first use; the time interval between the first use and its re-use ranges from 5 to 6 years. This latter finding implies that considering the charcoal production sites active only once may lead to an underestimation of the actual charcoal production, although the figures involved should not significantly alter the totals reported.

Also, some sites identified and counted on 2011-2013 images might be the remnants of sites built in the previous years.

Fig.21 – Example of a kiln used twice. In 2011 an old kiln is indicated with a yellow circle. The same kiln was used in 2015, as demonstrated by the bigger and more defined circular shape. In the same area two more kilns were setup. In 2017 the ashes of the kiln are less defined due to the surface water runoff and the regrowth of grasses. This figure also shows the selective cut of the big trees present in the area and visible with a darker tone and a coarser texture on the 2011 image. In fact, only few of them are left in 2017, due to charcoal production - \odot [2011, 2015, 2017] DigitalGlobe

As there is no homogeneous imagery coverage for each year, data has been aggregated into three periods: 2011-2013, 2014-2016 and 2017. The 2017 images were included in the analysis though with incomplete coverage of the area of interest, to highlight that charcoal production is still ongoing and therefore very relevant.

Figures 22, 23, 24 show the distribution of identified charcoal sites and image coverage per period.

Fig.22-23-24 – Distribution of identified charcoal sites and image coverage per period - © Google Earth

The following table shows the analysis results based on the image coverage analysed for the three periods (amounts are rounded to the nearest thousand) :

Period	Identified charcoal sites (#)	Charcoal production (tons)	Charcoal bags (#)
2011 - 2013	122,000	242,000	8,972,000
2014 - 2016	60,000	123,000	4,543,000
2017	49,000	79,000	2,930,000
Total	231,000	444,000	16,445,000

Unavailability of images and excessive cloud cover were limiting factors that prevented full VHR image coverage of the study area.

If performing the analysis considering only the overlapping image coverage available for all three periods, the results are as follows:

Period	Identified charcoal sites (#)	Charcoal production (tons)	Charcoal bags (#)
2011 - 2013	107,000	211,000	7,816,000
2014 - 2016	56,000	115,000	4,249,000
2017	46,000	77,000	2,840,000
Total	209,000	403,000	14,905,000

In view of the results from the overlapping coverage, the charcoal production for the period 2011 – 2013 was 2,605,000 bags per year, while it reduced to 1,416,000 bags per year during the period 2014 – 2016. It then increased in 2017, to 2,840,000 bags of charcoal produced. However, when considering for example the images available for 2017, they cover 79% of the study area. This means that projecting the estimated charcoal production to the total area covered by trees, the number of bags would be 3,595,000 in line with Somalia and Eritrea Monitoring Group reports on trends in charcoal production.

It should be emphasized that figures derived from this study are calculated based on a series of conservative assumptions and that there is a negative effect of clouds on the images interpreted. The percentages of cloud cover per image are reported in ANNEX II, while the table below shows the average cloud cover per each period investigated.

2017	18.1
2014-2016	7.9
2011-203	3.1
Stockpiles	12.8

Average Cloud Cover (%)

Fig. 25 - Overlapping area covered by VHR images for the three periods - © Google Earth

The area circled in red on Fig.26 presents almost no sites detected during the period 2011-2016 (almost no images available for 2017). Experts' knowledge suggests that the area is not used for charcoal production due to: lack of water resources that prevent workers from spending long time in the field; the area is tsetse fly-infested; trees are smaller in size as compared to other areas.

Fig. 26 - Area highlighted in red appears to be less affected by charcoal production - © Google Earth

Based on interviews and data from UNEP's report on the state of the Environment in Somalia (UNEP, 2005) it is assumed that **2 bags of charcoal are produced from a single average Acacia tree**. If the tree-bag conversion rate from the first study is applied, then about **8 million trees were felled during the period 2011 – 2017**, just for the area covered by the analysed images.

According to previous studies, the tree density for the area can vary between 3,400 trees and 6,000 trees per km². Out of 37,000 km², total extent of the study area, about 27,000 km² have been classified as covered by trees through the visual interpretation of both Landsat-8 images (2016/2017) and Google Earth very high resolution satellite images, which translates to about 93 to 165 million total potential trees present in the area depending on the tree density estimate adopted. These estimates, combined with the analysis of charcoal production, put the deforestation rate in the range **10% - 17.6% over the period 2011 – 2017 that is 1.4% to 2.5% per year**.

Figures are likely higher if considering the lack of images or/and excessive cloud cover on some images that limit the study area coverage.

Fig.27 - Tree covered area within the PROSCAL study area.

2.1 - Analysis of kiln size distribution

In total, more sites were identified for the period 2011-2013 due to the following reasons: 1) part of the sites detected in 2011-2013 are most likely the remains of production sites utilized in the previous years; 2) more images were available for this period; 3) images are less affected by cloud cover. However, regardless these facts, the trend of kiln sites distribution per radius size is similar over the 3 periods (see chart on Fig. 28): 3-meter radius kiln sites appear to be the most common, followed by 4 and 2 meters sites.

Interesting to note that unlike in 2011-2013 and in 2014-2016, in 2017 the number of 2 m radius kiln sites is higher than those of 4 m radius. This could be an indication that larger trees are decreasing and hence the production of charcoal is shifting to smaller trees and smaller kilns.

Fig. 28 - Kiln sites distribution per radius size over the three periods.

Chart on figure 29 shows the distribution in % of identified kiln sites, grouped by radius size. The percentage of 3 m radius sites is higher in 2014-2016 and 2017 than 2011-2013. Also, compared to previous periods, in 2017 there is a general drop in percentage of larger size sites (4 to 10 m) opposed to an increase in smaller sites (1 and 2 m). This supports the presumption that due to intensity of charcoal production, larger trees are disappearing and producers are moving to smaller ones.

Fig. 29 - Distribution in percentage of identified kiln sites, grouped by redius size.

2.2 - Analysis of production dynamics

The study area was divided in a grid of 1km x 1km squares and the number of kiln sites within each square was counted. On figures 30-31-32, darker red means higher density of sites per

 km^2 that translates in higher exploitation intensity. For example, in the period 2011 – 2013 the most affected areas are located north-north-east of Kismayo, around Jilib, and west of Buur Gaabo. During both period 2014 – 2016 and 2017, the most affected areas are those in the proximity of Kismayo and Buur Gaabo.

Fig.30-31-32 – Spatial distribution of charcoal production. Charcoal sites are grouped by 1 km \times 1 km grid cells - © Google Earth

Analysing the results of overlapping image coverage, allows for deeper understanding of charcoal production dynamics.

The analysis can be affected by the presence of clouds on available images and/or by the interpretation of contiguous images with different acquisition date within the same time frame, but in general it gives a good understanding of the shifting in locations of charcoal production. For example, during the investigated period, it is evident that charcoal production decreased in the area north-north-east of Kismayo (around Jilib), while intensified in areas near Kismayo and Buur Gaabo. This could be explained by the depletion of tree resources in the area and consequently producers were forced to move to more productive areas (with higher number of trees). Another reason could be of logistic sort. In fact, the new locations are closer to the main active ports used for shipping charcoal overseas, resulting in a decrease of costs linked to the transportation (and possibly taxation at checkpoints along the route) from the production site to the stocking and shipping location.

Figures 33, 34 and 35 highlight changes in number of site based on a 1 km² grid.

Fig.33 - Change between 2011-2013 and 2014-2016 - © Google Earth

Fig.34 - Change between 2014-2016 and 2017 - © Google Earth

Fig.35 - Overall change between the three periods - © Google Earth

The analysis of production dynamics through the distribution of kilns, from 2011 to 2016 shows an overall shift of charcoal production from the northern portion of the study area towards south, and from 2016 to 2017, a shift from the inland to the coastal area.

During the analysis of VHR images covering the southern portion of the study area, a breach was noted along the Kenya-Somalia border (see Fig.36). Given the shift of the production area southwards, it is possible that the opening was used to smuggle charcoal into Kenya. However, being the economic incentive much lower than exporting it to the Gulf Coastal Countries, it is very likely that only small amounts of charcoal were smuggled this way.

Fig.36 - The figure shows the mosaic of two images taken in the same period (end of 2017) along the Kenya-Somalia border. The red outlined box indicates the point used by trucks to cross the border. Several fresh tracks originating from this point are detected - © [2017] DigitalGlobe

3. Discussion and Recommendations

The loss of tree cover has a negative impact on the environment and consequently on people's lives. For example, the loss of the protective tree layer has a direct consequence of increasing the underlying soil's vulnerability to erosion by exposing it to agents such as desiccating winds and heavy rains (FAO, 2007).

Figure 37, 38 and 39 show, with a clear visual example, the devastating effects of charcoal production in one area of about 500 ha next to Jilib.

Vegetation cover appears almost intact on **2007** images (Fig. 37). It has to be noted that the dark green patches with a smooth texture, visible on the central and right portion of the image, indicates the presence of shrubby dense vegetation, while the lighter green colour with a coarser texture indicates the presence of trees.

In **2012**, the situation has completely changed and the typical pattern of tracks encroaching in the tree covered area is found in most part of the image (Fig. 38). Tracks are made with the purpose of accessing trees and produce charcoal. Note how new roads lead to new charcoal sites following an opportunistic plan to get closer to larger trees.

The light green colour indicates bare soil covered by seasonal grasses, i.e. the areas where trees have been cut. The absence of trees makes these areas very vulnerable as they are subject to further degradation due to surface runoff. During the rainy season the surface layer of fertile soil is constantly washed away. Moreover, increased runoff reduces groundwater recharge, thus lowering the water table, making droughts worse and determining a downward spiral towards an irreversible land degradation.

In **2014** the situation has worsened and the portion of bare soil is wider. It should be noticed that only areas with trees have been selectively affected by charcoal production, while the darker shrubby areas, clearly visible in 2007, have not been touched for obvious reasons, i.e. lower charcoal production. In seven years, about 40% of the area depicted in this example has been deforested.

Fig. 37 - Vegetation cover appears almost intact on a 2007 image - © Google Earth

Fig. 38 - Vegetation cover appears degraded and the typical pattern of tracks encroaching in the tree covered area is found in most part of the image - © Google Earth

Fig. 39 - Vegetation cover appears even more degraded with a wider portion of bare soil compared to Fig.38 - © Google Earth

A complete list of the resilience effects provided by trees in the dry lands of Eastern Africa was presented in a publication by the World Agroforestry Center (ICRAF, 2014):

- Trees are less unstable than livestock and crops during drought, as their deep rooting system allows access to water resources (not available to other life forms);
- Trees experience little mortality during drought (unlike livestock) and normally recommence full production once drought is over;
- Trees provide goods and services (fodder and forage) during the period at the end of the dry season and the start of the rainy season, when foods from crops and livestock are insufficient to satisfy demand;
- Trees enhance soil fertility by recycling of nutrients from the deep soil horizons to the topsoil layers and by fixating atmospheric nitrogen;
- Trees provide erosion control by reducing water runoff and speed, and thus improving soil moisture and protecting land, making it available for settlement and agriculture;
- Trees sequester carbon and thus can generate income through carbon emission trading system;
- Trees provide wood fuels.

Al-Shabaab is reported to be one of the main actors actively involved in the charcoal production business, together with Kenya Defence Force (KDF) and Interim Jubba Administration, through taxation at checkpoints and ports (UN Security Council, 2011 and 2016), and therefore in the loss of tree cover. Extending the analysis to other parts of the country (depending on image availability) will result in a better overview of charcoal production zones, which could give an indication of Al-Shabaab influence in the region. Nonetheless, also other armed groups may potentially profit from the incomes of large-scale charcoal production and consequently it may not be wise to focus the analysis of charcoal production solely on supposed Al-Shabaab territory.

The information derived from this study cover an unprecedented area of southern Somalia and take into account conservative figures. They provide accurate and crucial information on the magnitude of charcoal production/trade, its spatial origins and the impact in terms of tree loss over a wide timeframe.

The production of an estimate **16 million charcoal bags was calculated for the period 2011-2017**, equivalent to 8 million trees felled just in the area covered by the analysed images within the PROSCAL study area, translating in **one tree cut down every 30 seconds for the past 7 years**. It is exposed that the charcoal production affect most of the study area, with an estimated

deforestation rate in the range of 10% - 17.6% over the period 2011 – 2017 that is 1.4% to 2.5% per year.

Locations of charcoal stockpiles are pinpointed and fluctuations in stocks calculated aiming at a better understanding of production and export dynamics. Six major charcoal stockpiles sites were identified, with Kismayo and Buur Gaabo being the most important ones in terms of site extent and amount of charcoal stocked. Stockpiles stored in these two ports showed changes revealing an active trading, regardless the UN Security Council ban on charcoal export from Somalia.

The analysis of the charcoal production dynamics shows that it decreased around Jilib while intensified in areas near Kismayo and Buur Gaabo, which could be explained by the depletion of tree resources in Jilib area and forcing producers to move to more productive areas. Another reason could be of logistic sort, as the new locations are closer to the main active ports used for shipping charcoal overseas.

The analysis of kiln sites distribution per radius size is similar over the 3 periods and 3-meter radius kiln sites appear to be the most common, followed by 4 and 2 meters sites. However, in 2017 was noted that the numbers of 2 m radius kiln sites is higher than those of 4 m radius, as compared to the previous periods. This could be an indication that larger trees are decreasing and hence the production of charcoal is shifting to smaller trees and smaller kilns.

Even though with some limitations, the study helps in exposing the scale of charcoal production and extent of environmental destruction. Hence, these information will facilitate:

- Formulation of environmental policies, mobilization of key stakeholders in the region and building institutional capacity among government entities across Somalia for the effective monitoring and enforcement of the charcoal trade ban. Enforcement of export ban requires effective implementation by recipient UN member states (Gulf countries) and unless the export problem is solved, then the environmental impact cannot be properly addressed;
- Transition towards livelihood options that are sustainable, reliable and more profitable than charcoal production;
- Start of reforestation and afforestation throughout the country for the rehabilitation of degraded lands.

However, the already alarming figures on charcoal produced, could be even more distressing considering the following limitations experienced during the study:

• Partial study area coverage due to lack of images or/and excessive cloud cover on some images.

Uncertainty of assumptions made: for example, a recent study by UNEP (2015) put the tree-charcoal bag rate to 1 bag per 2 trees in South Sudan, a country with an environment comparable to south Somalia. If this could be the case for south Somalia then, the tree loss would be 4 times higher than currently calculated. In addition, an accurate analysis of the full range of multispectral VHR images available would allow for an improved calculation of tree density (currently in the range 3,400 to 6,000 per km²) and derived deforestation rate.

Considering the above limitations, in case an improved study is foreseen, it is recommended to:

- Perform a real case assessment to get precise values linked to charcoal production of a typical Somali kiln. This could help improving previous and current assumptions and overcome the uncertainties encountered in this and other studies. A real case scientific assessment would be a benchmark for future studies on charcoal production.
- 2) Widen the area of interest using available data on tree-covered areas, in order to monitor all the possible portions of southern Somalia affected by charcoal production.
- 3) Produce a land cover mapping/change assessment of the new study area to distinguish pure forested areas from shrub lands and/or other land cover features. The change assessment would define the trajectories of changes (for example: forest to bare soil or forest to agriculture, etc.).
- Acquire all the archived VHR satellite images available covering the area of interest, also considering archives not tapped by this study (for example: Pleiades or Planet VHR satellite images)
- 5) Define sample areas within the area of interest where to assess the exact amount of trees density, hence to derive precise percentages of tree loss.

Data derived from an improved assessment would provide more accurate and robust information over a larger area.

References

- AkpaluW, Dasmani I, Agblobitse PB. Demand for cooking fuels in a developing country: to what extent do taste and preferences matter? Energy Policy 2011;6525–6531.
- Bakonyi J, Abdullani A. Somalia—no central government, but still functioning. Agriculture & Rural Development. GTZ International Services; 2006. p. 36–8.
- Belward A, Bisselink B, Bódis K, Brink A, Dallemand JF, de Roo A, et al. Renewable Energies in Africa: current knowledge. JRC Scientific and Technical Reports EUR 25108 EN-2011. Luxembourg: Joint Research Centre, European Commission; 2011.
- Bird NM, Shepherd G. In: f. a. r. Ministry of Livestock, editor. Charcoal in Somalia: a wood fuel Inventory in the Bay Region of Somalia. Mogadishu, Somalia: National Range Agency; 1989.
- Bolognesi, M., Vrieling, A., Rembold, F., & Gadain, H. (2015). Rapid mapping and impact estimation of illegal charcoal production in southern Somalia based on WorldView-1 imagery. 25, 40-49. DOI: 10.1016/j.esd.2014.12.008.
- Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, et al. Africa. Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Contribution ofWorking Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press; 2007. p. 433–67.
- Clancy JS. Urban ecological footprints in Africa. Afr J Ecol 2008;46(4):463-70. http://dx.doi.org/10.1111/j.1365-2028.2008.01041.x
- FAO (2007). Forests, trees and water in arid lands: a delicate balance. Forests and water. Unasylva No. 229. Vol. 58, 2007/4. Food and Agriculture Organization of the United Nations, Rome.FAO. Criteria and indicators for sustainable woodfuels. FAO Forestry Paper, vol. 160. Rome, Italy: Food and Agriculture Organization of the United Nations; 2010.
- FAO. FAO Statistical Database. Retrieved November 2014, from http://faostat.fao.org/, 2014.
- Holleman CF. The socio-economic implications of the livestock ban in Somaliland. Nairobi: Famine Early Warning Systems Network; 2003.
- ICRAF. Treesilience: an assessment of the resilience provided by trees in the dry lands of Eastern Africa. Nairobi, Kenya: World Agroforestry Centre; 2014.

- Kanninen M, Murdiyarso D, Seymour F, Angelsen A, Wunder S, German L. Do trees grow on money?: the implications of deforestation research for policies to promote REDD. Bogor, Indonesia: Center for International Forestry Research (CIFOR); 2007.
- MPDES-CHE. Impact of charcoal production on environment and the socio economy of pastoral communities of Somaliland. Ministry of Pastoral Development & Environment, Somaliland & Candlelight for Health, Education & Environment; 2004. p. 37.
- Mwampamba TH, Ghilardi A, Sanderd K, Chaixe KJ. Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy Sustain Dev 2013;17(2):75–85.
- Omuto CT, Vargas RR, Alim MS, Ismail A, Osman A, Iman HM. Land degradation assessment and a monitoring framework in Somalia. Project Report L-14. Nairobi, Kenya: FAO SWALIM; 2009.
- Rembold F, Oduori SM, Gadain H, Toselli P. Mapping charcoal driven forest degradation during the main period of Al Shabaab control in Southern Somalia. Energy Sustain Dev 2013;17(5):510–4. http://dx.doi.org/10.1016/j.esd.2013.07.001.
- Ribot JC. Theorizing access: forest profits along Senegal's charcoal commodity chain.
 Dev Chang 1998;29(2):307–41. http://dx.doi.org/10.1111/1467-7660.00080.
- Richardson PJ, Lundholm JT, Larson DW. Natural analogues of degraded ecosystems enhance conservation and reconstruction in extreme environments. Ecol Appl 2010; 20:728–40. http://dx.doi.org/10.1890/08-1092.1.
- Robinson AP. Charcoal-making in Somalia: a look at the Bay method. Tropical forestry action plan for Latin America. Unasylva 1988;40(159).
- > Somalia and Eritrea Monitoring Group (SEMG). Personal communication. 2018.
- UN Security Council. Report of the Secretary-General on the protection of Somali natural resources and waters; 2011.
- United Nations S/2013/413 "Letter dated 12 July 2013 from the Chair of the Security Council Committee pursuant to resolutions 751 (1992) and 1907 (2009) concerning Somalia and Eritrea addressed to the President of the Security Council". http://www.un.org/ga/search/view_doc.asp?symbol=S/2013/413
- United Nations S/2014/726 "Letter dated 10 October 2014 from the Chair of the Security Council Committee pursuant to resolutions 751 (1992) and 1907 (2009) concerning Somalia and Eritrea addressed to the President of the Security Council". http://www.un.org/ga/search/view_doc.asp?symbol=S/2014/726
- United Nations S/2015/801 "Letter dated 9 October 2015 from the Chair of Security Council Committee pursuant to resolutions 751 (1992) and 1907 (2009) concerning

Somalia and Eritrea addressed to the President of the Security Council". http://www.un.org/ga/search/view_doc.asp?symbol=S/2015/801

- United Nations S/2016/919 "Letter dated 7 October 2016 from the Chair of the Security Council Committee pursuant to resolutions 751 (1992) and 1907 (2009) concerning Somalia and Eritrea addressed to the President of the Security Council". http://www.un.org/ga/search/view_doc.asp?symbol=S/2016/919
- United Nations S/2016/920 "Letter dated 7 October 2016 from the Monitoring Group on Somalia and Eritrea addressed to the Chair of Security Council Committee pursuant to resolutions 751 (1992) and 1907 (2009) concerning Somalia and Eritrea". http://www.un.org/ga/search/view_doc.asp?symbol=S/2016/920
- United Nations S/2017/924 "Letter dated 2 November 2017 from the Chair of the Security Council Committee pursuant to resolutions 751 (1992) and 1907 (2009) concerning Somalia and Eritrea addressed to the President of the Security Council". http://www.securitycouncilreport.org/atf/cf/%7B65BFCF9B-6D27-4E9C-8CD3-CF6E4FF96FF9%7D/s_2017_924.pdf
- > UNEP. The state of the environment in Somalia: a desk study. UNEP/Earthprint; 2005.
- UNEP. The environmental crime crisis: threats to sustainable development from illegal exploitation and trade in wildlife and forest resources. In: Nellemann C, HenriksenR, Raxter P, Ash N, Mrema E, editors. Nairobi and Arendal UNEP and GRID-Arendal; 2014.
- UNEP. Charcoal & fuelwood consumption in juba and the associated impacts on forests.
 2015.
- Wardle P, Pontecorvo F. Special enquiry on fuelwood and charcoal. Paper presented at the UN Conference on New and Renewable Sources of Energy; 1981. [Nairobi, Kenya].
- Whiteman A, Broadhead J, Bahdon J. The revision of woodfuel estimates in FAOSTAT. Unasylva 2002;53(4):41-5. [211].
- Zulu LC, Richardson RB. Charcoal, livelihoods, and poverty reduction: evidence from sub-Saharan Africa. Energy Sustain Dev 2013;17(2):127–37. http://dx.doi.org/10.1016/j.esd.2012.07.007.

ANNEX I – Detailed summary of VHR satellite images used to assess area covered by charcoal stockpile in Kismayo by site

Scene name	Year	K1 ~ area # bags	K2 ~ area # bags	K3 ~ area # bags
Multispectral_12JAN30073346- S3DMR1C1	2012	outside image	~5,000 m ² 187,500	n/a
Multispectral_12DEC22	2012	cloud	~7,000 m ² 262,500	n/a
Panchromatic_15JAN11082914- P3DSR1C1	2015	~2,500 m ² 93,750	n/a	~6,000 m ² 225,000
Panchromatic_15FEB19082538- P3DSR1C1	2015	cloud	n/a	Cloud
Multispectral_15MAR27074806- S3DMR1C1	2015	~4,000 m ² 150,000	n/a	~6,500 m ² 243,750
Multispectral_15APR07074154- S3DMR1C1	2015	~3,000 m ² 112,500	n/a	~4,000 m ² 150,000
Multispectral_15AUG31075247- S3DMR1C1	2015	Cloud	n/a	~3,000 m ² 112,500
Multispectral_15SEP16073443- S3DMR1C1	2015	Cloud	n/a	~5,000 m² 187,500
Panchromatic_15NOV02094014- P3DSR1C1	2015	Cloud	n/a	~6,000 m ² 225,000
Panchromatic_15DEC23094144- P3DSR1C1	2015	cloud	n/a	Cloud
Panchromatic_16JAN17095515- P3DSR1C1	2016	~5,500 m ² 206,250	n/a	~6,000 m ² 225,000
Panchromatic_16MAR20101156- P3DSR1C1	2016	Cloud	n/a	~5,000 m² 187,500
Multispectral_16APR13072224- S3DMR1C1	2016	~5,000 m ² 187,500	n/a	~5,000 m ² 187,500
Multispectral_16MAY19074434- S3DMR1C1	2016	~4,500 m ² 168,750	n/a	~2,500 m ² 93,750
Multispectral_16JUN17072427- S3DMR1C1	2016	~3,500 m ² 131,250	n/a	~3,000 m ² 112,500

Panchromatic_16JUN30102846- P3DSR1C1	2016	outside image	n/a	~3,500 m ² 131,250
Multispectral_16JUL25072224- S3DMR1C1	2016	~3,500 m ² 131,250	n/a	~1,500 m ² 56,250
Multispectral_16SEP09072512- S3DMR1C1	2016	~2,000 m ² 75,000	n/a	~1,000 m ² 37,500
Panchromatic_160CT03103010- P3DSR1C1	2016	~2,500 m ² 93,750	n/a	~1,500 m ² 56,250
Multispectral_160CT25072719- S3DMR1C1	2016	cloud	n/a	~2,000 m ² 75,000
Panchromatic_16NOV06103408- P3DSR1C1	2016	outside image	n/a	~3,000 m ² 112,500
Multispectral_16NOV26074432- S3DMR1C1	2016	cloud	n/a	~3,500 m ² 131,250
Panchromatic_16DEC27103751- P3DSR1C2	2016	~5,000 m ² 187,500	n/a	~4,000 m ² 150,000
Multispectral_17JAN06073300- S3DMR1C2	2017	~5,000 m ² 187,500	n/a	~4,000 m ² 150,000
Panchromatic_17JAN22103140- P3DSR1C2	2017	~5,000 m² 187,500	n/a	cloud
Multispectral_17FEB13072929- S3DMR1C2	2017	cloud	n/a	cloud
Panchromatic_17MAR31103342- P3DSR1C2	2017	cloud	n/a	~3,500 m ² 131,250
Multispectral_17APR19072937- S3DMR1C2	2017	~5,000 m ² 187,500	n/a	outside image
Panchromatic_17JUN24103552- P3DSR1C2	2017	~3,500 m ² 131,250	n/a	~2,500 m ² 93,750
Multispectral_17NOV01_R1C1-R1C2	2017	~7,500 m ² 281,250	n/a	~4,500 m ² 168,750
Panchromatic_17NOV20_R2C1-R1C2- R2C2	2017	~6,500 m ² 243,750	n/a	~4,500 m ² 168,750
Multispectral_18JAN06_R8C1-R8C2	2018	~6,500 m ² 243,750	n/a	~4,500 m ² 168,750

ANNEX II – List of VHR satellite images used to detect charcoal sites and stockpiles

LEGEND 2017	2014-2016	2011-203	Stockpiles
----------------	-----------	----------	------------

FID	Satellite Source	Acquisition Date	Product Type	Cloud Cover (%)	Off Nadir Angle	Sun Elevation	Sun Azimuth	GSD (m)	Feature Id	Parent Id
Ţ	CONTRA		Pan Sharpened Natural	, ,	0 00	r L	0	L	זייט אטיר אטער ארבע כא אאנענענענענענען	
-	207 20	ZUT/-TZ-3UIU/:3/:U9.14ZZ	COLOR	T-5.1	20.0	T./C	13/.U	c.U	101311030247300C99000919147C00461	
2	GE01	2017-12-20T07:27:00.685Z	Pan Sharpened Natural Color	6.1	24.0	56.3	136.3	0.49	aeb24e653831c34f723c967af129b378	
m	WV02	2017-12-11T07:35:23.614Z	Pan Sharpened Natural Color	31.0	28.2	58.7	139.0	0.5	c275cb83f7249bf527e9d272bd4d240e	
4	WV03_VNIR	2017-12-06T07:56:30.869Z	Pan Sharpened Natural Color	32.3	25.6	62.4	146.5	0.36	020ccc7544c92b002e8ab03fb89a1867	
S	WV01	2017-10-17T10:35:11.8032	Panchromatic	15.1	22.6	62.9	247.0	0.5	29fa960b04081054bc488a7963e0e851	
9	WV01	2017-10-17T10:34:50.2032	Panchromatic	15.8	17.4	63.1	246.8	0.5	f1df7a3393bd575a114e72b9ef8339b9	
7	WV02	2017-10-04T07:35:20.093Z	Pan Sharpened Natural Color	34.0	24.1	68.6	105.0	0.5	578ec9aba2603b7d77d14d1437dcce76	
∞	WV01	2017-09-17T10:35:50.5522	Panchromatic	0.1	26.4	66.9	273.8	0.5	dbe3cd19693dc3b352a9fccda4004bc7	
6	WV01	2017-09-17T10:35:36.902Z	Panchromatic	0.0	15.9	67.1	275.3	0.5	134173ce3527e9c1654cb45ff438baf3	
10	GE01	2017-08-22T07:27:06.485Z	Pan Sharpened Natural Color	23.1	27.7	62.0	66.6	0.5	6d233cf4d08a1c46fb6fd33667a52d23	
11	WV01	2017-08-18T10:37:04.374Z	Panchromatic	22.4	27.3	65.8	301.4	0.5	e97b54f8f9f598c7b7b18e2e1c0a24b6	
12	WV01	2017-08-18T10:36:51.374Z	Panchromatic	36.8	26.5	66.3	300.4	0.5	558234bae0db24d6fc35f82337e80c31	
13	GE01	2017-08-17T07:44:00.285Z	Pan Sharpened Natural Color	19.7	12.0	62.3	57.6	0.42	32f99ae9664f11c3101689ec0d3bc369	
14	GE01	2017-08-14T07:33:50.6852	Pan Sharpened Natural Color	47.7	24.6	59.5	58.5	0.48	50f56cedde62e123f61e3f0d49d56d0c	
15	GE01	2017-07-26T07:36:19.484Z	Pan Sharpened Natural Color	9.6	19.6	57.0	50.0	0.5	18981b8f080588bc7555b3d3added366	
16	GE01	2017-07-15T07:32:36.485Z	Pan Sharpened Natural Color	15.0	25.8	55.4	47.7	0.5	1a35e7143b1af3c914bcbc140f5c8828	
17	WV03_VNIR	2017-06-14T07:49:46.7382	Pan Sharpened Natural Color	49.1	27.3	60.2	38.8	0.38	5f43aef178b6f35c79d98449b0d9182b	
18	WV03_VNIR	2017-06-08T07:53:18.5712	Pan Sharpened Natural Color	36.0	23.5	61.1	38.0	0.36	c3fc344e53e94bf87f36a76cb4ef2b8d	

41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19
WV02	GE01	WV02	GE01	WV02	WV03_VNIR	WV03_VNIR	WV03_VNIR	WV03_VNIR	WV02	WV02	WV02	WV03_VNIR	WV02	WV02	WV02	WV03_VNIR	GE01	WV02	GE01	WV03_VNIR	WV03_VNIR	WV03_VNIR
2017-02-13T07:29:29.788Z	2017-02-18T07:32:29.485Z	2017-02-21T07:34:21.749Z	2017-03-01T07:36:28.485Z	2017-03-09T07:43:34.423Z	2017-03-13T07:52:22.936Z	2017-03-13T07:52:39.636Z	2017-03-19T07:49:06.029Z	2017-03-19T07:49:17.779Z	2017-03-25T07:52:06.018Z	2017-03-25T07:52:25.617Z	2017-03-31T07:30:39.526Z	2017-04-01T07:57:45.166Z	2017-04-19T07:29:37.404Z	2017-04-19T07:30:35.254Z	2017-04-27T07:35:27.565Z	2017-05-14T07:51:19.147Z	2017-05-14T07:55:21.885Z	2017-06-04T07:30:25.321Z	2017-06-07T07:37:07.885Z	2017-06-08T07:52:31.844Z	2017-06-08T07:52:48.683Z	2017-06-08T07:53:01.494Z
Pan Sharpened Natural Color																						
36.2	16.3	7.3	0.6	13.7	25.5	3.7	49.7	26.7	6.0	11.2	0.2	20.5	13.5	1.5	12.7	30.3	9.2	25.5	26.0	43.3	30.6	29.9
26.4	27.3	22.7	16.3	11.1	20.1	21.0	28.2	28.2	23.2	15.9	26.5	19.8	28.8	26.9	25.1	24.8	29.6	26.7	20.0	21.8	18.2	19.0
58.8	59.3	60.7	63.0	64.5	68.0	68.2	67.5	67.5	67.8	67.8	64.1	70.2	62.9	63.2	61.8	64.4	64.7	57.8	57.2	61.1	61.1	61.1
115.8	111.0	108.7	108.2	97.4	96.9	95.6	89.9	89.2	80.8	80.8	82.7	75.4	64.1	63.7	55.7	43.7	42.6	44.8	43.7	37.9	37.9	37.9
0.5	0.5	0.5	0.5	0.5	0.34	0.35	0.39	0.38	0.5	0.5	0.5	0.33	0.5	0.5	0.5	0.36	0.5	0.5	0.5	0.35	0.34	0.34
677bbdd6691a1fe56bafaab25aa34ae4	739e145dcfdf6c230b172e22d2d2b2df	4ca535b5041b6999dc861c1a9c54199f	ae4d651e4cc210961f4468bd573912eb	67455541e8b857a018065358d130460a	9227524b83c23b84884c9a2f6921971b	496c454e1736693adace7fc173d748fc	de54ce04c1d1e09d5a7340a45ca43173	3b1d19b587935d4199f2162ebe567488	869ecce0dcd7708cf053b0b8e3bd546c	af3e4734d36504aa7422039729cc11b6	f06707889d0fbce0a6b79d96efebe728	449467b0aeb7045f76e85f72dd54b696	c334456e8387253f5be7f15baa535cb3	707455c566fa3dedcc7b82119c615c59	daf7047922138c6f3a6aac9916e076d6	40373369e066304b811a3610fc864e59	b630da6db00f3387c6f153812d7cca00	964e067674d4094acce1e3c0893c28fd	65921dfb4f6360c0ccc2caffe62a6cd2	c2e0025079eed9361c6a4d6e91ed1d52	14a2dc2d39d942cdefc4de4daf4f3c2c	8c69d24b7dac4edd053b8ce0c23439eb

64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
WV02	WV01	WV01	WV01	WV03_VNIR	GE01	WV03_VNIR	WV03_VNIR	WV03_VNIR	WV02	WV02	GE01	WV02	WV02	WV03_VNIR	WV03_VNIR	WV03_VNIR						
2016-10-22T07:38:53.350Z	2016-10-30T07:42:35.961Z	2016-10-30T07:42:35.961Z	2016-10-30T07:42:54.612Z	2016-12-07T07:40:18.617Z	2016-12-18T07:33:50.404Z	2016-12-18T07:34:08.204Z	2017-01-09T10:34:50.745Z	2017-01-09T10:35:05.594Z	2017-01-09T10:35:20.745Z	2017-01-10T07:52:13.901Z	2017-01-11T07:35:47.485Z	2017-01-11T08:07:37.550Z	2017-01-16T07:49:00.394Z	2017-01-17T08:04:13.193Z	2017-01-22T07:40:04.705Z	2017-01-25T07:30:38.261Z	2017-01-30T07:34:09.685Z	2017-02-02T07:34:03.371Z	2017-02-02T07:34:38.572Z	2017-02-04T07:55:13.024Z	2017-02-04T07:55:36.974Z	2017-02-10T07:53:07.868Z
Pan Sharpened Natural Color	Panchromatic	Panchromatic	Panchromatic	Pan Sharpened Natural Color																		
21.7	15.2	15.2	26.9	17.7	12.4	21.2	2.8	3.7	6.9	18.7	2.3	4.3	29.9	16.6	0.1	16.6	13.2	0.5	3.7	10.3	20.3	36.3
24.3	10.6	10.6	19.1	22.5	19.8	24.6	20.2	19.5	24.2	25.2	11.4	19.5	26.3	3.6	23.2	28.0	21.5	24.3	11.3	21.7	19.7	28.1
67.8	66.7	66.7	66.8	59.0	57.0	57.0	61.5	61.6	61.6	59.7	57.1	61.6	59.5	61.4	57.7	56.4	57.9	57.9	58.3	62.2	62.5	63.4
118.0	129.0	129.0	129.3	139.7	138.0	137.9	219.7	219.6	219.4	136.4	133.1	142.8	134.6	138.1	132.0	124.8	121.7	125.7	126.1	125.4	125.1	120.5
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.37	0.5	0.34	0.37	0.31	0.5	0.5	0.5	0.5	0.5	0.35	0.34	0.39
b069becbe937390c9bd6f4a5dd75c3ad	f6a743f1f63baa4d88cac8a78e48897f	f6a743f1f63baa4d88cac8a78e48897f	e0a0c0c9ada4fd2b4ed0fb92f557d145	151c0e76ecab3d374c61d436453af65c	7c47bfc5a575c867824058302b892be0	b4f78d900096bb7fed60e26d81c628e5	937f24a1124be63ed384dffcedf1f333	eb5944176624f78f3900b02ae272cc51	2bf8a611f48351cc75e559c2b7ea9d89	5843189fb12063ce7bc7200be46f6dc1	534798288cf30e14e5076271e5bb9645	2cacbdc5918c9c2166fe6c1380436b2b	3295cfbc09027ea19f9bfe5c3acfc10e	21ed1dc5ca98b918ecd11f5832b89a0d	7af0f542fda072076e8125992ace0aff	5f6e2ba14e831992140f452679f070b4	330d43ac8b976ad1b2735add3303feb8	28eba1eace902034cf45cb100062761e	03342287b16cef48ec7b83ab9408ae2b	c14603f5193fbc87d5203fc38bb6dc5d	bb19f2e83feec06789b2e00bb3beb203	c0ff87bf43530488d7bb26db033bda0d

88	87	86	28	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65
GE01	GE01	WV02	GE01	GE01	WV01	WV01	WV01	WV02	WV02	GE01	WV01	WV02	WV02	WV01	WV01	WV01	GE01	WV02	WV01	WV03_VNIR	WV01	WV03_VNIR	WV03_VNIR
2016-02-28T07:51:40.284Z	2016-02-28T07:52:40.685Z	2016-03-06T07:23:41.794Z	2016-03-15T07:39:36.885Z	2016-03-15T07:39:59.085Z	2016-03-16T10:05:31.169Z	2016-03-16T10:06:01.770Z	2016-03-20T10:12:26.510Z	2016-04-13T07:22:18.399Z	2016-04-13T07:22:30.599Z	2016-05-03T07:36:46.485Z	2016-05-14T10:19:27.948Z	2016-05-26T07:35:36.361Z	2016-05-31T07:51:30.968Z	2016-05-31T10:24:07.479Z	2016-06-04T10:31:10.770Z	2016-06-08T10:37:47.309Z	2016-08-20T07:41:32.485Z	2016-08-21T07:26:31.160Z	2016-09-07T10:34:11.805Z	2016-09-21T07:56:07.167Z	2016-10-03T10:30:10.415Z	2016-10-09T07:48:22.598Z	2016-10-16T08:01:32.591Z
Pan Sharpened Natural Color	Panchromatic	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color				
8.5	6.5	2.6	0.5	0.6	41.6	19.1	6.2	20.7	15.8	31.7	10.0	26.0	3.5	3.3	12.4	31.2	8.8	14.7	1.8	5.8	4.3	33.1	35.4
26.7	27.2	25.1	10.4	21.5	27.0	26.7	18.2	25.2	26.6	21.0	27.7	7.6	25.7	29.0	14.0	13.8	20.2	27.5	23.9	5.2	27.9	22.7	14.6
65.6	66.0	59.6	65.0	65.0	79.0	79.2	77.2	61.5	61.7	64.1	63.4	58.2	60.2	60.5	59.7	58.5	63.7	60.7	67.9	73.3	66.8	71.5	73.3
111.0	110.5	100.0	95.1	95.1	264.8	269.9	277.1	69.8	69.7	55.2	320.4	45.6	39.7	323.9	321.6	321.0	60.1	63.9	288.4	93.1	260.4	112.3	125.3
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.31	0.5	0.36	0.33
0cc64380b6033b05f8aa4a8655f51f71	eb9b3539793246fb169def1c8431187c	0576a6f97c95dfe56d4be70069fccc53	b16b8e91f0cad7a16d1e7186808b501c	bd17f236b24427f42a26f9b560704728	e72beee503fd4de34b9fd4dfe0b6ebd2	c3483867425b05c1e8aeba8b583e5c3c	3e166e64825b105c1617b22cd61b40fd	188571082c2b49b46613316719f64eb1	55ee56fdc4fdcf20e65fe04fb71abad8	6a78a0474b60d8a8354972153a338436	5bd20866ea9ad24a7d5c0511d9855b8d	8d7270581a7d152e02aa52b116a95b36	a49e267ecce3572996b471b5cb71294f	3551f2139acf59f6fc1aa09965d91936	5b45acd9ac678554fa7201c41448439d	183a994a3ac1314e4957a78b3b83c50f	1bf1015dcf590d735b080130c350da50	f8d5dd0e0bf335dc200e1dc92b444716	36b9401bd71335a67529823374555219	bf5d99402ef6368e9e13bdc7a25cce6f	76cf87bd1653469edbac79342b77a34d	9729a15172f4fc00e506959b3ff95d38	00ad0bae7d8695c4b7a999ef767d0b41

112	111	110	109	108	107	106	105	104	103	102	101	100	66	86	97	96	95	94	93	92	91	06	89
WV02	WV02	WV01	Multiple	WV02	WV02	WV02	WV02	WV02	WV03_VNIR	GE01	WV02	GE01	GE01	WV02	WV01	WV02	WV02	WV03_VNIR	WV03_VNIR	WV03_VNIR	GE01	WV02	WV01
2015-03-05T08:00:22.028Z	2015-03-16T07:53:10.594Z	2015-10-20T09:44:07.374Z	2016-01-17T07:30:48.802Z	2016-01-17T07:31:02.052Z	2016-01-22T07:45:20.608Z	2016-01-22T07:45:39.009Z	2016-01-22T07:45:57.208Z	2016-01-22T07:45:57.208Z	2016-02-09T08:02:21.701Z	2016-02-14T07:40:33.885Z	2016-02-16T07:24:27.616Z	2016-02-17T07:49:11.285Z	2016-02-17T07:49:29.485Z	2016-02-18T07:50:49.220Z	2016-02-19T10:13:25.534Z	2016-02-21T07:39:17.475Z	2016-02-21T07:39:36.625Z	2016-02-21T07:51:39.189Z	2016-02-21T07:52:04.089Z	2016-02-21T07:52:29.688Z	2016-02-22T07:32:38.085Z	2016-02-24T07:29:42.129Z	2016-02-24T09:54:48.472Z
Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color			Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Panchromatic													
0.0	0.4	1.0	1.6	0.1	0.2	0.0	0.0	0.0	2.2	1.3	6.9	0.0	0.0	0.3	3.9	2.3	1.1	0.3	0.1	0.0	11.1	0.7	4.8
27.1	17.5	26.1	0.0	23.5	18.3	20.7	25.4	25.4	27.6	21.4	21.6	19.8	22.3	25.4	17.5	14.1	7.6	11.1	4.9	19.6	16.5	22.5	27.6
68.3	67.7	75.6	0.0	56.3	58.4	58.5	58.7	58.7	64.7	60.7	57.8	63.2	63.3	63.0	74.5	61.8	61.8	64.6	64.6	64.6	60.4	59.3	76.8
108.0	92.9	231.9	0.0	130.4	132.8	133.1	133.4	133.4	129.3	118.2	113.0	120.7	120.5	115.7	225.1	112.1	112.0	117.3	117.3	117.3	113.4	108.3	219.6
0.5	0.5	0.5	0.5	0.5	0	0	0.5	0.5	0.38	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.32	0.31	0.34	0.5	0.5	0.5
53618f859311b4edbe54c7a0bee012ae	1205fb0324f1850f4a2d4d7721c0b616	816f8dcb2c4933fbc1947449e193f9da	cd58e822f9360b3c3f71664a1292a375	bb3a34f4d0515fec5c2a50ceee3c1a98	34b8ca3d7a2c45f43608c3e25b3cbbb2	d2b2e0fcd3e948a88d949da14a37cc79	b870625d1bb4bd17f035c18c1854816c	b870625d1bb4bd17f035c18c1854816c	6469d734a2a647fcd15e91d0ea4c2c53	13195f16e015f2f807d87a8517a1cfcf	0a356c474438ef44ad58d98d7eda4eab	31c1156b74eb7ee636095cd229f621df	dc884063f27130dbd2aa9e0ae49019f7	1c51819d66199be3df24f4e36e4853b9	21d1e0162bc7f2d7d000240834d1e284	12fb7fbe107cc2d596801eb730a1040e	d6f12a8afc16ff5fe8dbed2869c5f7f0	4b2134f3a0ccd68c0eca671e4b90099c	0255841b98fc9b4fe4d3bd46d1d58b68	6517b6e17bda914f7705048d3ff1c120	1776d3ad6b118985ee2d0fa85630e0df	f0c9a91c300423e5c9a82f7ce777431b	ebe8861057ed3a3901d691cc95f5f39a
					4cf98585a4a2828835258a65baf47341	4cf98585a4a2828835258a65baf47341																	

ſ	139	138	137	136	135	134	133	132	131	130	129	128	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113
	WV02	WV02	WV02	WV02	WV01	WV02	WV03	WV03	WV03	GE01	WV02	WV02	WV02	WV02	WV02	WV02	WV01										
	2013-02-17T08:00:23.044Z	2013-02-17T08:00:39.983Z	2013-02-17T08:00:57.783Z	2013-02-17T08:02:23.782Z	2013-02-19T07:36:49.022Z	2013-02-19T07:37:02.933Z	2013-02-19T07:37:17.435Z	2013-02-19T07:37:17.435Z	2013-02-19T07:37:31.975Z	2013-02-19T07:37:31.975Z	2013-02-23T07:42:41.372Z	2013-02-23T07:42:55.082Z	2013-02-23T07:43:10.004Z	2013-02-23T07:43:23.058Z	2013-03-25T07:35:25.492Z	2013-09-28T07:46:24.217Z	2015-01-12T07:31:02.993Z	2015-01-12T07:31:25.293Z	2015-01-12T07:31:49.543Z	2015-01-20T07:33:33.085Z	2015-02-12T07:35:14.348Z	2015-02-12T07:35:26.848Z	2015-02-12T07:35:26.848Z	2015-02-12T07:35:39.197Z	2015-02-12T07:35:39.197Z	2015-02-12T07:35:51.597Z	2015-02-23T08:31:23.733Z
				Pan Sharpened Natural Color	Panchromatic			Panchromatic		Panchromatic					Panchromatic					Pan Sharpened Natural Color			Pan Sharpened Natural Color	Pan Sharpened Natural Color			Panchromatic
	0.0	0.0	0.0	18.2	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.3	0.8	0.0	0.0	0.3	0.3	8.5	0.7	1.2	0.7	0.4	0.0	0.0
	24.3	14.5	7.8	24.1	18.9	13.0	15.9	14.9	22.7	22.2	3.7	4.3	16.9	24.2	21.2	27.9	27.9	21.2	13.0	24.9	25.2	23.8	23.8	23.7	23.7	25.0	17.6
	65.4	65.6	65.7	66.0	61.5	61.3	61.3	61.3	61.2	61.2	63.0	63.1	63.0	62.9	64.8	70.7	55.1	55.0	55.0	56.3	59.4	59.5	59.6	59.7	59.7	59.9	73.1
	121.4	121.7	121.9	119.1	115.2	115.3	115.2	115.0	115.1	115.0	113.3	112.6	112.5	112.5	86.6	91.4	132.5	132.5	132.6	128.9	119.3	119.5	119.5	119.6	119.6	119.8	128.2
	0	0	0	0.5	0.5	0	0	0.5	0	0.5	0	0	0	0	0.5	0	0	0	0	0.5	0	0	0.5	0.5	0	0	0.5
	c05ce990d3aff2749b822ec38cf381c6	62b24b638d14a9f511ec39f616b1d804	e0069d24f499d97652509061c88d6dec	dd6439a967804bc8e9d54e8003c1f274	acab121b21bbda8d7b627a967fa3229d	e2d5d9ebfc96535816813e7b2b00cb8d	7dc34956d650925298fd4b519fc6e7ea	7db9421380f2a8a7c90de3f471b20f85	e43af89e981a3cc5534e7d5c908d1d68	4ba843a0df3f5c8f1c15c7502da3af15	97ae0e931384a620187535138baad098	c03e320ed00b44aec514e684179c6101	64fa24daeb731c357fb4adb0479b65f5	adb4d0e5425c8ab09f1e30f373da3202	47d9713ac9343499b4067789d62b5e05	0dff4790dd2e92dbf1fba7df0b1c4182	8e5f05f29794b7cca046251895b427be	ac2a8bb2f2fab208e5351f0a9109062c	fcb57c5502b3b60a7f79144ac6dc4c84	9d8fc402a4082bbcc8761041ac5a1ad3	ae40cff364e10ef97a394ba12e7eb589	911b09f4541e0bd7824ac27018f8e211	341d6024a7124aea9fa37d401bffbbdc	794bed2d6cf8dd9bc78e10cdc260cb3c	3ec90e7d35f69f986a916bac5e5d46c1	8eb330deadeb4979bf48b3b204fd8766	a006199fdef12d8ce8ac6d3a260d8509
	0de31f7e0c9a39e3bfbe6c4ad36ccc8a	0de31f7e0c9a39e3bfbe6c4ad36ccc8a	0de31f7e0c9a39e3bfbe6c4ad36ccc8a			e6503e54c0dba7bbdd911567b4d9f16c	e6503e54c0dba7bbdd911567b4d9f16c		e6503e54c0dba7bbdd911567b4d9f16c		e6503e54c0dba7bbdd911567b4d9f16c	7eda794323eb6a1b2957038091d8695d	7eda794323eb6a1b2957038091d8695d	7eda794323eb6a1b2957038091d8695d		3a0e4939a48af0ec79f1df223b68bb81	4cf98585a4a2828835258a65baf47341	4cf98585a4a2828835258a65baf47341	4cf98585a4a2828835258a65baf47341		505850cc57e9be9cd16594b17802309e	505850cc57e9be9cd16594b17802309e			505850cc57e9be9cd16594b17802309e	505850cc57e9be9cd16594b17802309e	

166	165	164	163	162	161	160	159	158	157	156	155	154	153	152	151	150	149	148	147	146	145	144	143	142	141	140
WV01	WV01	WV02	WV01	WV01	WV01	WV01	WV02	WV01	WV02	WV01	WV01	WV02	WV02	WV02	WV02	WV01	WV01	WV02	WV01	WV02	WV02	WV02	WV01	WV01	WV02	WV02
2012-02-06T07:53:00.572Z	2012-02-06T07:53:27.7722	2012-02-06T07:53:49.097Z	2012-02-06T07:53:59.372Z	2012-02-15T07:42:25.022Z	2012-03-03T07:42:19.376Z	2012-03-07T07:47:32.014Z	2012-03-07T07:49:41.418Z	2012-03-20T07:41:56.060Z	2012-04-22T07:56:43.557Z	2012-04-23T07:43:02.079Z	2012-06-08T07:58:48.062Z	2012-07-29T07:46:00.097Z	2012-07-29T07:46:17.057Z	2012-12-03T08:04:00.974Z	2012-12-14T07:58:35.189Z	2012-12-17T07:41:48.168Z	2012-12-17T07:42:04.769Z	2012-12-25T07:53:27.804Z	2012-12-30T07:38:18.060Z	2013-01-10T08:03:18.627Z	2013-01-18T08:07:40.838Z	2013-01-18T08:08:47.238Z	2013-01-20T07:44:34.062Z	2013-01-20T07:44:48.305Z	2013-01-24T07:46:46.156Z	2013-01-24T07:46:46.156Z
				Panchromatic			Pan Sharpened Natural Color														Pan Sharpened Natural Color		Panchromatic	Panchromatic		
1.3	3.0	0.0	1.0	37.4	0.0	0.0	0.6	1.1	0.2	3.7	3.5	4.1	8.9	8.2	5.8	2.1	4.7	0.0	0.9	4.4	0.0	4.0	14.0	9.3	3.8	3.8
21.6	0.9	25.2	23.1	26.2	27.3	25.7	28.4	25.0	15.9	28.3	18.6	25.2	27.1	14.6	16.5	25.9	20.4	27.2	23.4	14.4	23.7	28.5	9.1	19.0	28.8	28.8
62.8	62.8	62.6	62.9	61.4	64.5	65.4	65.9	66.6	66.7	64.0	59.8	61.2	61.1	64.9	62.6	59.6	59.6	60.9	56.9	61.7	62.1	63.5	58.8	58.7	59.6	59.6
125.0	124.7	125.6	125.0	120.8	104.2	103.0	103.6	92.9	53.6	56.7	35.7	47.8	47.9	145.8	143.4	137.3	137.1	139.8	136.7	138.4	142.8	138.6	130.3	130.2	131.2	131.2
0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0.5	0.5	0	0
5c56e2eed34b0a31f699b25ba5011843	ffb5659e4ab55435799ac883c106d0e1	ba1e326aa5f295687f47a3253cfa02e4	e6b8a0bc514ba91ec04b7fcec9480301	6a1be53dc855d0d46baf89f0d57146d0	91f4ee3d04b38279b9444b249ca137ab	9c3d3f4fa0c636cf93b055db714d24b1	b50995338f8031e77220e1612999e710	9402e443e67e3ea03335e47aa4e0f447	b7d68abf9aebe3a4a2fab2075370e161	dbb8b016644184b0f15afcd1f7738dd3	3ceb3fd2646537f0f5c652a9f29677f6	e89654593aafe1a0d2b5972c2f85767f	2edffc3bf518eeeab468546af32b626e	b8be0dd982ebcc1fb7e20f20f7a202fe	c199c7448b6b4bdf0edbf74b320aba10	480210d624d67257a76fc423115f1e56	04edc588f87d1b546f1271687556ddb7	2d07a756d5a8a9dd2100642d2e09e3f1	eb91f9c26769e84a6c5c201bae2dae5c	18d972dc13367bb9bff16e051c48f60a	cc0e77ec0778287515ab44160bf196fc	2e79d45cc5f790b8f3b552059bbe0693	4d802fe51ebee8e7be76eec65bd38698	c4f48698cffdf62c4698ab140235fc44	078650e3972dbd645da1fb1367f2fa9f	078650e3972dbd645da1fb1367f2fa9f
763bd2badbd5d178c0fc6c976eb993c2	763bd2badbd5d178c0fc6c976eb993c2	85dfa14abd1be6a6fc6fbcc0bc7e5d45	763bd2badbd5d178c0fc6c976eb993c2		763bd2badbd5d178c0fc6c976eb993c2	b90962cdfc9215d8bf0b8fcd439d4447		bc8837dfe6d0f7681cf02225ba99a323	dce0cdd9a92d45ff631b11371f6c4b3c	44355bd775e1783abd8ae6dc998919fe	44355bd775e1783abd8ae6dc998919fe	841cac592854497246c0e048f0ae3d84	841cac592854497246c0e048f0ae3d84	6d4c61a84fcd07a7dc20a1a17148cd44	6d4c61a84fcd07a7dc20a1a17148cd44	3a0e4939a48af0ec79f1df223b68bb81	3a0e4939a48af0ec79f1df223b68bb81	6d4c61a84fcd07a7dc20a1a17148cd44	7eda794323eb6a1b2957038091d8695d	dce0cdd9a92d45ff631b11371f6c4b3c		763bd2badbd5d178c0fc6c976eb993c2			b98c0974be693177c06a21b84c9f4373	b98c0974be693177c06a21b84c9f4373

ដ

219	218	217	216	215	214	213	212	211	210	209	208	207	206	205	204	203	202	201	200	199	198	197	196	195
WV02	WV02	WV02	WV02	WV02	WV02	WV01	WV01	WV02	WV02	WV02	WV01	WV01	WV02	WV01	WV01	GE01	WV01	WV01	WV02	WV01	WV01	WV01	WV01	WV01
2017-02-13T07:29:29.788Z	2017-02-13T07:29:29.788Z	2017-02-21T07:34:21.749Z	2017-02-21T07:34:21.749Z	2017-03-31T07:31:28.026Z	2017-03-31T07:31:48.626Z	2017-03-31T10:33:42.519Z	2017-03-31T10:34:15.468Z	2017-04-19T07:29:37.404Z	2017-04-19T07:29:56.654Z	2017-04-27T07:35:27.565Z	2017-05-04T10:36:02.959Z	2017-06-24T10:35:52.883Z	2017-07-01T07:34:26.382Z	2017-10-30T10:31:24.722Z	2017-10-30T10:31:36.971Z	2017-11-01T07:31:48.685Z	2017-11-20T10:38:40.545Z	2009-11-11T07:57:37.372Z	2010-11-12T07:53:53.040Z	2011-01-02T08:01:19.079Z	2011-01-06T08:06:55.038Z	2011-01-06T08:07:27.737Z	2011-01-06T08:07:27.737Z	2011-01-15T07:55:48.942Z
Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Panchromatic	Panchromatic				Panchromatic	Panchromatic	Panchromatic					
36.2	36.2	7.3	7.3	11.9	5.7	6.1	1.4	13.5	19.8	12.7	9.3	10.6	16.7	2.4	1.1	16.0	0.0	0.0	1.3	0.1	0.0	1.2	1.2	5.1
26.4	26.4	22.7	22.7	26.5	25.4	28.2	25.1	28.8	27.5	25.1	26.9	13.0	25.8	25.4	25.3	18.7	5.1	22.0	7.3	14.8	23.7	17.6	17.6	13.1
58.8	58.8	60.7	60.7	63.1	63.3	69.6	69.7	62.9	62.7	61.8	62.1	58.8	54.9	62.3	62.2	65.3	58.2	67.4	67.3	60.1	61.4	61.7	61.7	60.6
115.8	115.8	108.7	108.7	77.3	77.2	283.5	287.2	64.1	64.2	55.7	310.3	320.8	43.7	239.7	239.8	126.0	230.9	139.6	141.1	145.3	144.1	142.2	142.2	136.1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.45	0.5	0.5	0	0	0	0.5	0.5	0.5
677bbdd6691a1fe56bafaab25aa34ae4	677bbdd6691a1fe56bafaab25aa34ae4	4ca535b5041b6999dc861c1a9c54199f	4ca535b5041b6999dc861c1a9c54199f	06abb9fe91e7f3a3565117fd3cf8bda3	9a19fe554be3059164e9410c2b6653e2	7a81e71d25b86007d7a8b093eee833f5	0e03d2af9f3d0826e8b6cf45881dec33	c334456e8387253f5be7f15baa535cb3	dca7b892a67260952114e15c216a00b1	daf7047922138c6f3a6aac9916e076d6	6179f8fee7babf3606b879d756428bc0	dcbb5e9c9b828f937107e76bc8fe5604	14a5f9657d464bc815574649ec8cb676	57beacfad16fd99ddb78a3576675afcd	7211994264988bb6e19f27a058d1453d	bda419b9bb411e53e6567c21f885a46f	6827075569524b07fac7845dfa43f895	b1d555faa846c03317e70b74b129d67e	66326d28c8b9f2a6f86f5f8767a62149	a56aa135bfe906bdca1c873b9d01919d	3fad772eb5551f1f77fab0e4bf17e78b	4084d3443af951b5e63a9bcd2c08f841	4084d3443af951b5e63a9bcd2c08f841	0d4e76c12e984e3591208f4fc3806079
																			841cac592854497246c0e048f0ae3d84	bc8837dfe6d0f7681cf02225ba99a323	b90962cdfc9215d8bf0b8fcd439d4447			

243	242	241	240	239	238	237	236	235	234	233	232	231	230	229	228	227	226	225	224	223	222	221	220
WV02	WV01	WV03_VNIR	WV02	WV03_VNIR	WV01	WV03_VNIR	WV02	WV02	WV02	WV02	WV02	WV02	WV01	WV03_VNIR	GE01	WV02	WV01	WV01	WV02	WV02	WV01	WV01	WV03_VNIR
2016-09-03T07:47:18.979Z	2016-09-07T10:34:11.805Z	2016-09-08T07:45:34.031Z	2016-09-09T07:25:12.587Z	2016-09-21T07:57:06.267Z	2016-10-03T10:30:10.415Z	2016-10-09T07:49:15.098Z	2016-10-14T07:32:57.438Z	2016-10-19T07:48:04.145Z	2016-10-19T07:48:04.145Z	2016-10-22T07:38:20.150Z	2016-10-25T07:27:08.004Z	2016-10-25T07:27:25.803Z	2016-11-06T10:34:09.005Z	2016-11-09T07:50:58.865Z	2016-11-26T07:44:06.885Z	2016-11-26T07:46:06.202Z	2016-12-23T10:32:06.787Z	2016-12-27T10:37:51.877Z	2017-01-06T07:32:54.832Z	2017-01-06T07:33:20.033Z	2017-01-09T10:35:20.745Z	2017-01-22T10:31:40.163Z	2017-02-10T07:53:07.868Z
Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color						
17.1	1.8	39.6	20.0	16.9	4.3	20.9	5.0	24.9	24.9	20.9	39.9	39.5	20.9	3.0	5.7	22.4	0.0	0.8	32.0	29.8	6.9	12.4	36.3
26.5	23.9	18.2	27.5	6.4	27.9	26.9	9.2	22.3	22.3	27.0	24.3	26.7	19.9	26.5	16.1	16.1	29.2	20.1	25.0	27.6	24.2	25.9	28.1
66.9	67.9	70.7	63.9	72.9	66.8	71.7	68.6	70.6	70.6	68.6	65.3	65.2	60.7	67.5	62.5	62.8	60.5	58.9	56.5	56.8	61.6	64.2	63.4
67.0	288.4	77.7	77.6	84.9	260.4	105.8	116.6	116.7	116.7	125.8	120.6	120.5	236.2	134.3	141.0	141.7	219.8	221.0	133.4	131.0	219.4	220.8	120.5
0.5	0.5	0.33	0.5	0.31	0.5	0.37	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.38	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.39
b5f8b34c63cd241fbd69042c94f8165c	36b9401bd71335a67529823374555219	2f8cdba3de5d32d8deb208a9cfe508c6	07944f7b2e35d9250189ff3fae0c00a6	4da43deaf5277150d814a7b37922b30f	76cf87bd1653469edbac79342b77a34d	afdf47226e1244130ef47093a3caddc9	709c2598c0292e3048a6880ad1f6379a	d16f041ddca81c5942b9a03cc03e1f98	d16f041ddca81c5942b9a03cc03e1f98	8e70ba8600bacaa920c443dc0fa87143	0c2a84fa7983d7d905ae10bce19972b2	8f03ace4ec74db5258b9277f142dfbee	09b80269d761decf17f188474f1f03fe	cbd2a542f4e678e4a553cd3f34a9e310	f06e239b37789939c67d2ad25a026dae	3320a389e568093c035fd0e2dca4460e	38dc749ec218b62ced713be367f6c98a	6f881fc2854982cd63046cb6a0f2b9a6	292fd30d4aa93628de94203d000efbd9	6dea8ce4cbe1e940c0e6a68b8993c986	2bf8a611f48351cc75e559c2b7ea9d89	61e44965bf08b4e66aa2b00d334f462d	c0ff87bf43530488d7bb26db033bda0d

ភូ

		_		_		_	-	_		_	_	_	_		_	_	_	_				_		
268	267	266	265	264	263	262	261	260	259	258	257	256	255	254	253	252	251	250	249	248	247	246	245	244
WV03_VNIR	GE01	WV01	WV01	WV02	WV03_VNIR	WV01	WV01	WV01	WV02	WV01	WV02	WV01	WV01	WV03_VNIR	WV02	WV02	WV01	WV01	WV02	WV02	WV02	WV01	WV02	WV02
2015-09-03T07:50:11.814Z	2015-09-16T07:34:43.285Z	2015-10-20T09:44:07.374Z	2015-11-02T09:40:14.115Z	2015-11-24T07:21:16.774Z	2015-12-19T07:43:39.004Z	2015-12-23T09:41:41.583Z	2016-01-17T09:55:15.570Z	2016-02-19T10:13:42.485Z	2016-02-21T07:39:36.625Z	2016-03-20T10:11:56.110Z	2016-04-13T07:22:18.399Z	2016-05-14T10:19:27.948Z	2016-05-14T10:19:27.948Z	2016-05-19T07:44:25.647Z	2016-05-29T07:25:53.966Z	2016-05-29T07:25:53.966Z	2016-05-31T10:24:07.479Z	2016-05-31T10:24:07.479Z	2016-06-17T07:24:27.243Z	2016-06-17T07:24:53.594Z	2016-06-17T07:24:53.594Z	2016-06-30T10:28:46.479Z	2016-07-25T07:22:23.820Z	2016-08-29T07:31:27.972Z
Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color
0.0	23.3	1.0	6.3	49.5	16.2	30.0	0.0	2.2	1.1	1.6	20.7	10.0	10.0	49.1	6.3	6.3	3.3	3.3	24.8	23.7	23.7	10.0	8.5	12.1
19.6	21.6	26.1	16.4	23.2	22.4	24.1	15.7	21.2	7.6	4.0	25.2	27.7	27.7	23.5	25.4	25.4	29.0	29.0	26.2	27.2	27.2	28.6	27.9	22.9
67.7	67.3	75.6	71.6	59.2	59.7	65.6	67.8	74.9	61.8	76.3	61.5	63.4	63.4	61.6	55.5	55.5	60.5	60.5	55.4	53.5	53.5	60.1	55.8	62.7
66.2	82.0	231.9	218.4	136.0	137.8	198.5	202.4	229.1	112.0	271.6	69.8	320.4	320.4	43.7	45.9	45.9	323.9	323.9	46.2	45.0	45.0	323.7	53.0	67.5
0.34	0.5	0.5	0.5	0.5	0.35	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.36	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
2c670f7d5dc35ff3dea122e664d740c1	d7052a264048ef586419c9729309a583	816f8dcb2c4933fbc1947449e193f9da	ab0205a2e3e3c050aaa641348800cb06	efd054b6dddf0406476e3056535382f5	583275030993f6a5d19d63c3062009e2	455e38980b5ccd041bdc8fd1b14043fe	3ecbc1ce557ed5c71c6cede1ca588ffd	3aafde3736e9fe72d619d4e99a34d57b	d6f12a8afc16ff5fe8dbed2869c5f7f0	a0c3b51ba3a0c099d8c8b8ef9c14ea49	188571082c2b49b46613316719f64eb1	5bd20866ea9ad24a7d5c0511d9855b8d	5bd20866ea9ad24a7d5c0511d9855b8d	a34e1a8be9e7fd81ef2ffbbf2e41a7fc	180558491a81c310d8c89832d59b2635	180558491a81c310d8c89832d59b2635	3551f2139acf59f6fc1aa09965d91936	3551f2139acf59f6fc1aa09965d91936	9016d83afa660e3410e2ea3e192f7b6c	86e71ea2d55befc32583cc6a24c82677	86e71ea2d55befc32583cc6a24c82677	be742894023b72e5542de3af779ebb47	d0f853f6a772508ce49f995807c67ccc	54a0a954f4bb8bb508130146d0e21395

292	291	290	289	288	287	286	285	284	283	282	281	280	279	278	277	276	275	274	273	272	271	270	269
WV02	WV02	WV02	WV02	WV03_VNIR	WV02	WV01	WV01	WV01	WV02	WV03_VNIR	WV01	WV01	WV01	WV02	WV01	WV02	WV02	WV01	WV02	WV03_VNIR	WV02	WV01	WV02
2013-09-28T07:46:06.594Z	2014-06-02T07:49:25.015Z	2014-10-24T07:35:39.842Z	2014-12-03T07:58:12.024Z	2014-12-24T07:27:20.511Z	2015-01-07T08:04:39.723Z	2015-01-11T08:29:14.792Z	2015-01-11T08:29:30.942Z	2015-01-11T08:29:30.942Z	2015-01-29T07:52:49.004Z	2015-02-06T07:33:46.768Z	2015-02-15T08:19:02.052Z	2015-02-19T08:25:38.843Z	2015-03-04T08:20:24.182Z	2015-03-16T07:52:53.593Z	2015-03-20T08:40:44.793Z	2015-03-24T07:58:04.755Z	2015-03-27T07:48:06.209Z	2015-04-06T08:37:53.350Z	2015-04-07T07:41:44.126Z	2015-04-10T07:37:02.858Z	2015-04-26T07:39:49.504Z	2015-06-17T08:54:22.091Z	2015-08-31T07:52:45.329Z
Pan Sharpened Natural Color	Pan Sharpened Natural Color		Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Panchromatic	Panchromatic	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Pan Sharpened Natural Color	Panchromatic	Pan Sharpened Natural Color
5.4	49.8	2.6	14.2	29.0	11.7	3.5	24.4	24.4	0.4	17.4	11.3	7.0	0.0	2.1	27.4	0.0	5.3	1.4	6.7	7.0	0.0	15.3	49.9
27.3	26.6	28.4	27.5	22.0	25.1	28.6	25.3	25.3	28.3	15.0	23.6	21.7	29.1	24.4	21.8	20.4	21.2	28.9	23.7	23.1	25.0	29.5	26.8
70.8	60.0	67.8	64.1	56.5	62.5	65.5	66.2	66.2	61.9	58.6	69.9	71.9	74.3	67.8	80.2	69.8	67.9	78.0	66.3	63.8	63.4	64.6	68.6
92.2	39.7	126.3	143.6	132.9	140.0	152.0	149.5	149.5	133.6	118.3	133.8	127.8	118.9	92.9	85.7	83.2	82.3	50.5	71.8	68.6	56.2	10.8	64.5
0.5	0.5	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.36	0.5	0.5	0.5
c650169e0c0e63e8cf03ccceefc35362	8d9ce214c0b007acf7808c4ecc3832bc	0e95d70858f503c83e451d6d6caa8cdc d15	d149d979a282505ccedd0877e0213ba9	e984806c1f6dcb8c6f371b90315584b7	36e06f8dccb5f5c526ce3b322907c41e	0c03b520af9843d5ecaa74dacef898a7	6755040973edc64da04218aaee53c910	6755040973edc64da04218aaee53c910	b5957405c321b255d4f59d7ec6574034	15617ac227cfbbc8eb6b21ae6e48c225	ee429a130ab822f99824f6ef6e7f5267	fec1938e5ca7a16d42223261ad8df1fa	306abcc10f780194433daee53629518f	7460b1f8e2daa74849b645c0ca50fd64	8d810a340bf72adf53f165f34234b068	48c1ad36ef578899687db7a827f15b64	4c87e9adccf9be7bafeedb7e40bb0d3f	aa409f4299cfe930f128e1aa442cae53	84710d1761d9daaea68e1a83c4246f57	e11943577fb281f0be9cf9345b05e62e	83ee459434ac731a7aa5a3a488d394b6	bc0ca487a2b4ad55e5e9e0c43547e6a4	2caa3d5f35776ceaa039e8555e444d21
		174ade1d4745606de03bb6410a38f																					

316	315	314	313	312	311	310	309	308	307	306	305	304	303	302	301	300	299	298	297	296	295	294	293
QB02	WV02	WV01	GE01	WV01	GE01	WV01	WV01	WV01	WV02	WV01	WV02	WV02	WV02	WV02									
2008-12-20T07:51:48.444Z	2010-02-16T07:42:37.421Z	2011-01-15T07:55:48.942Z	2011-01-15T07:56:50.838Z	2011-01-15T07:56:50.838Z	2011-02-18T07:56:19.2222	2011-02-18T07:56:19.222Z	2011-03-03T07:50:40.953Z	2011-03-07T07:56:30.406Z	2011-03-20T07:50:34.618Z	2011-03-20T07:50:34.618Z	2011-09-02T07:47:10.218Z	2011-10-23T07:26:28.285Z	2012-01-29T07:42:24.039Z	2012-01-30T07:33:32.885Z	2012-02-02T07:47:40.058Z	2012-02-02T07:47:40.058Z	2012-04-23T07;43:02.079Z	2012-12-14T07:58:35.189Z	2012-12-17T07:41:48.168Z	2012-12-22T08:03:43.060Z	2012-12-25T07:53:27.804Z	2013-08-29T07:49:49.403Z	2013-09-28T07:46:06.594Z
Pan Sharpened Natural Color		Panchromatic	Pan Sharpened Natural Color		Pan Sharpened Natural Color								Pan Sharpened Natural Color	Pan Sharpened Natural Color									
4.9	1.8	5.1	8.4	8.4	7.9	7.9	10.4	1.1	4.1	4.1	3.8	0.7	1.2	4.0	2.9	2.9	3.7	5.8	2.1	16.5	0.0	42.7	5.4
14.1	9.1	13.1	15.1	15.1	12.4	12.4	3.3	10.8	25.6	25.6	27.1	23.5	27.5	7.5	19.8	19.8	28.3	16.5	25.9	23.7	27.2	26.7	27.3
60.6	62.7	60.6	61.2	61.2	65.2	65.2	67.0	67.7	67.3	67.3	66.8	65.7	59.7	57.7	61.2	61.2	64.0	62.6	59.6	62.0	60.9	67.1	70.8
141.1	121.0	136.1	134.6	134.6	115.4	115.4	111.7	100.6	86.7	86.7	65.2	115.8	127.4	124.1	124.4	124.4	56.7	143.4	137.3	147.0	139.8	64.3	92.2
0.6	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0	0.5	0	0	0	0	0	0	0	0.5	0.5
ce08d887b55ab62923d0f18c29d34528	7ea1503c98266324246d529ee790f093	0d4e76c12e984e3591208f4fc3806079	a12cc080e5bc931d46482529d567a331	a12cc080e5bc931d46482529d567a331	b4b5b362306318008b626ee2d00b0565	b4b5b362306318008b626ee2d00b0565	aedc89b74e11cdb4d74f66da5d6c54d4	911bef83a130d5f2294ac04a2d886632	47ed7d2d101332aead119fd0c2e68866	47ed7d2d101332aead119fd0c2e68866	e654a974eb92f5fed7af2971655d8de1	7e75842f6dc5b7143329edeb8a88fe89	70306baa30b078f3ffc822ca947fb21e	be221bb6dc13691a1bb9079735cf00a6	8de935026fc3d19fab133d004ff6965a	8de935026fc3d19fab133d004ff6965a	dbb8b016644184b0f15afcd1f7738dd3	c199c7448b6b4bdf0edbf74b320aba10	480210d624d67257a76fc423115f1e56	171c8f5a6b9b3a967b754cb8977f1e68	2d07a756d5a8a9dd2100642d2e09e3f1	029da416782505bad56f01d5cecf4221	c650169e0c0e63e8cf03ccceefc35362
	2d4eae4da76f014994f1e448df3d0120												841cac592854497246c0e048f0ae3d84		44355bd775e1783abd8ae6dc998919fe	44355bd775e1783abd8ae6dc998919fe	44355bd775e1783abd8ae6dc998919fe	6d4c61a84fcd07a7dc20a1a17148cd44	3a0e4939a48af0ec79f1df223b68bb81	97965bd3e44d03837d352c4da72c9fc0	6d4c61a84fcd07a7dc20a1a17148cd44		